Skip to main content

Advertisement

Log in

Investigation on the structural, thermal and hydration properties of gold-fullerene nanocomposite

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

In this article, we report the self-assembly process, structural features, thermal and hydration properties of the gold fullerene nanocomposite at room temperature by applying molecular dynamics simulation technique. The gold-fullerene systems constituting alkanethiol capped gold nanoparticle and pristine fullerene in explicit water have been simulated to gain insights on the influence of the terminal methyl (hydrophobic) and hydroxy (hydrophilic) groups on their structure and properties. The physisorption of the fullerene molecule into the thiol layer of the gold nanoparticle has been demonstrated and elucidated. The chemical functionality of the terminal groups was found to affect the structure, specific heat capacity and the wetting behavior of the gold-fullerene nanocomposite. The findings from this computational study may aid the understanding and development of novel gold-fullerene nanostructures for modulating their structural, thermal and hydration properties through the modification of their surface functional groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Yeh Y C, Creran B and Rotello V M 2012 Gold nanoparticles: preparation, properties, and applications in bionanotechnology Nanoscale 4 1871

  2. Daniel M C and Astruc D 2004 Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology Chem. Rev. 104 293

    CAS  PubMed  Google Scholar 

  3. Jin R, Zeng C, Zhou M and Chen Y 2016 Atomically precise colloidal metal nanoclusters and nanoparticles: fundamentals and opportunities Chem. Rev. 116 10346

    CAS  PubMed  Google Scholar 

  4. Sardar R, Funston A M, Mulvaney P and Murray R W 2009 Gold nanoparticles: past, present, and future Langmuir 25 13840

  5. Gonzalez A L, Noguez C and Barnard A S 2012 Map of the structural and optical properties of gold nanoparticles at thermal equilibrium J. Phys. Chem. C 116 14170

    CAS  Google Scholar 

  6. Hosseini S, Alsiraey N, Riley A J, Zubkov T, Closson T, Tye J, Bodappa N and Li Z 2018 Variable growth and characterizations of monolayer-protected gold nanoparticles based on molar ratio of gold and capping ligands Langmuir 34 15517

    CAS  PubMed  Google Scholar 

  7. Colangelo E, Comenge J, Paramelle D, Volk M, Chen Q and Levy R 2016 Characterizing self-assembled monolayers on gold nanoparticles Bioconjug. Chem. 28 11

    PubMed  Google Scholar 

  8. Thakor A S, Jokerst J, Zavaleta C, Massoud T F and Gambhir S S 2011 Gold nanoparticles: a revival in precious metal administration to patients Nano Lett. 11 4029

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Homberger M and Simon U 2010 On the application potential of gold nanoparticles in nanoelectronics and biomedicine Philos. Trans. R. Soc. A 368 1405

    CAS  Google Scholar 

  10. Ahmad R, Griffete N, Lamouri A, Felidj N, Chehimi M M and Mangeney C 2015 Nanocomposites of gold nanoparticles@ molecularly imprinted polymers: chemistry, processing, and applications in sensors Chem. Mater. 27 5464

    CAS  Google Scholar 

  11. Sztandera K, Gorzkiewicz M and Klajnert-Maculewicz B 2019 Gold nanoparticles in cancer treatment Mol. Pharm. 16 1

    CAS  PubMed  Google Scholar 

  12. Mieszawska A J, Mulder W J, Fayad Z A and Cormode D P 2013 Multifunctional gold nanoparticles for diagnosis and therapy of disease Mol. Pharm. 10 831

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Nasaruddin R R, Chen T, Yan N and Xie J 2018 Roles of thiolate ligands in the synthesis, properties and catalytic application of gold nanoclusters Coord. Chem. Rev. 368 60

    CAS  Google Scholar 

  14. Hermanson G T 2013 In Buckyballs, Fullerenes, and Carbon Nanotubes, Bioconjugate Techniques 3rd edn. Chapter 16 (Location: Elsevier) p. 741

  15. Dinadayalane T C and Leszczynski J 2012 In Handbook of Computational Chemistry 1st edn. Chapter 22 (Dordrecht: Springer) p. 793

  16. Dinadayalane T C and Leszczynski J 2010 Remarkable diversity of carbon-carbon bonds: structures and properties of fullerenes, carbon nanotubes, and graphene Struct. Chem. 21 1155

    CAS  Google Scholar 

  17. Goodarzi S, Da Ros T, Conde J, Sefat F and Mozafari M 2017 Fullerene: biomedical engineers get to revisit an old friend Mater. Today 20 460

    CAS  Google Scholar 

  18. Hirsch A 2010 The era of carbon allotropes Nat. Mater. 9 868

    CAS  PubMed  Google Scholar 

  19. Bosi S, Da Ros T, Spalluto G and Prato M 2003 Fullerene derivatives: an attractive tool for biological applications Eur. J. Med. Chem. 38 913

    CAS  PubMed  Google Scholar 

  20. Castro E, Garcia A H, Zavala G and Echegoyen L 2017 Fullerenes in biology and medicine J. Mater. Chem. B 5 6523

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang Y, Murtaza I and Meng H 2018 Development of fullerenes and their derivatives as semiconductors in field-effect transistors: exploring the molecular design J. Mater. Chem. C 6 3514

    CAS  Google Scholar 

  22. Jariwala D, Sangwan V K, Lauhon L J, Marks T J and Hersam M C 2013 Carbon nanomaterials for electronics, optoelectronics, photovoltaics, and sensing Chem. Soc. Rev. 42 2824

    CAS  PubMed  Google Scholar 

  23. Fang Y, Huang Q -J, Wang P, Li X -Y and Yu N -T 2003 Adsorption behavior of C60 fullerene on golden crystal nanoparticles Chem. Phys. Lett. 381 255

    CAS  Google Scholar 

  24. Piotrowski P, Pawlowska J, Pawlowski J, Opuchlik L J, Bilewicz R and Kaim A 2014 Fullerene modification of gold electrodes and gold nanoparticles based on application of aromatic thioacetate-functionalized C60 RSC Adv. 4 64310

  25. Matsuo Y, Lacher S, Sakamoto A, Matsuo K and Nakamura E 2010 Conical pentaaryl[60] fullerene thiols: self-assembled monolayers on gold and photocurrent generating property J. Phys. Chem. C 114 17741

    CAS  Google Scholar 

  26. Lu F, Xiao S, Li Y, Song Y, Liu H, Li H, Zhuang J, Liu Y, Gan L and Zhu D 2004 Fullerene-functionalized gold core–shell nanoparticles: preparation and optical limiting properties Inorg. Chem. Commun. 7 960

    CAS  Google Scholar 

  27. Luo Z, Zhao Y S, Yang W, Peng A, Ma Y, Fu H and Yao J 2009 Core-shelll nanopillars of fullerene C60/C70 loading with colloidal Au nanoparticles: a Raman scattering investigation J. Phys. Chem. A 113 9612

    CAS  PubMed  Google Scholar 

  28. Shi J, Chen Z, Wang L, Wang B, Xu L, Hou L and Zhang Z 2016 A tumor-specific cleavable nanosystem of PEG-modified C60@ Au hybrid aggregates for radio frequency-controlled release, hyperthermia, photodynamic therapy and X-ray imaging Acta Biomater. 29 282

  29. Yin G, Xue W, Chen F and Fan X 2009 Self-repairing and superhydrophobic film of gold nanoparticles and fullerene pyridyl derivative based on the self-assembly approach Colloids Surf. Physicochem. Eng. Asp. 340 121

    CAS  Google Scholar 

  30. Palanisamy S, Thirumalraj B and Chen S -M 2015 Electrochemical fabrication of gold nanoparticles decorated on activated fullerene C60: an enhanced sensing platform for trace level detection of toxic hydrazine in water samples RSC Adv. 5 94591

  31. Bonifazi D, Enger O and Diederich F 2007 Supramolecular [60] fullerene chemistry on surfaces Chem. Soc. Rev. 36 390

    CAS  PubMed  Google Scholar 

  32. Ahangari M G, Ganji M D and Jalali A 2016 Interaction between fullerene-wheeled nanocar and gold substrate: a DFT study Phys. E Low-Dimens. Syst. Nano 83 174

    CAS  Google Scholar 

  33. Nemati A, Pishkenari H N, Meghdari A and Sohrabpour S 2018 Directing the diffusive motion of fullerene-based nanocars using nonplanar gold surfaces Phys. Chem. Chem. Phys. 20 332

    CAS  Google Scholar 

  34. Sändig N, Bakalis E and Zerbetto F 2015 Stochastic analysis of movements on surfaces: the case of C60 on Au (1 1 1) Chem. Phys. Lett. 633 163

    Google Scholar 

  35. Pishkenari H N, Nemati A, Meghdari A and Sohrabpour S 2015 A close look at the motion of C60 on gold Curr. Appl. Phys. 15 1402

    Google Scholar 

  36. Akimov A V, Williams C and Kolomeisky A B 2012 Charge transfer and chemisorption of fullerene molecules on metal surfaces: application to dynamics of nanocars J. Phys. Chem. C 116 13816

    CAS  Google Scholar 

  37. Ryu T, Lansac Y and Jang Y H 2017 Shuttlecock-shaped molecular rectifier: asymmetric electron transport coupled with controlled molecular motion Nano Lett. 17 4061

    CAS  PubMed  Google Scholar 

  38. Sutradhar S and Patnaik A 2017 Charge transfer-induced assembly of a gold nanocomposite mediated by N-methylfulleropyrrolidine: excitation energy transfer from Rhodamine B New J. Chem. 41 2401

    CAS  Google Scholar 

  39. Sutradhar S and Patnaik A 2017 Structure and dynamics of a N-methylfulleropyrrolidine-mediated gold nanocomposite: a spectroscopic ruler ACS Appl. Mater. Interfaces 9 21921

    CAS  PubMed  Google Scholar 

  40. Stadler R, Kubatkin S and Bjørnholm T 2007 An ab initio study of the field-induced position change of a C60 molecule adsorbed on a gold tip Nanotechnology 18 165501

  41. Chen C -H, Krylov D S, Avdoshenko S M, Liu F, Spree L, Westerström R, Bulbucan C, Studniarek M, Dreiser J and Wolter A U B 2018 Magnetic hysteresis in self-assembled monolayers of Dy-fullerene single molecule magnets on gold Nanoscale 10 11287

  42. Wang J, Tang J -M, Larson A M, Miller G P and Pohl K 2013 Sharp organic interface of molecular C60 chains and a pentacene derivative SAM on Au (788): a combined STM & DFT study Surf. Sci. 618 78

    CAS  Google Scholar 

  43. Bubnis G J, Cleary S M and Mayne H R 2009 Self-assembly and structural behavior of a model rigid C60-terminated thiolate on Au (1 1 1) Chem. Phys. Lett. 470 289

    CAS  Google Scholar 

  44. Sutradhar S, Jacob G V and Patnaik A 2017 Structure and dynamics of a dl-homocysteine functionalized fullerene-C60–gold nanocomposite: a femtomolar l-histidine sensor J. Mater. Chem. B 5 5835

    CAS  PubMed  Google Scholar 

  45. Rincón-García L, Ismael A K, Evangeli C, Grace I, Rubio-Bollinger G, Porfyrakis K, Agraït N and Lambert C J 2016 Molecular design and control of fullerene-based bi-thermoelectric materials Nat. Mater. 15 289

    PubMed  Google Scholar 

  46. Jorgensen W L, Chandrasekhar J, Madura J D, Impey R W and Klein M L 1983 Comparison of simple potential functions for simulating liquid water J. Chem. Phys. 79 926

    CAS  Google Scholar 

  47. Heinz H, Vaia R A, Farmer B L and Naik R R 2008 Accurate simulation of surfaces and interfaces of face-centered cubic metals using 12-6 and 9-6 Lennard-Jones potentials J. Phys. Chem. C 112 17281

    CAS  Google Scholar 

  48. Rai B, Sathish P, Malhotra C P, Pradip and Ayappa K G 2004 Molecular dynamic simulations of self-assembled alkylthiolate monolayers on an Au (111) surface Langmuir 20 3138

  49. Brooks B R, Bruccoleri R E, Olafson B D, States D J, Swaminathan S and Karplus M 1983 CHARMM: a program for macromolecular energy, minimization, and dynamics calculations J. Comput. Chem. 4 187

    CAS  Google Scholar 

  50. Devi J M 2014 Aggregation of thiol coated gold nanoparticles: a simulation study on the effect of polymer coverage density and solvent Comput. Mater. Sci. 86 174

    Google Scholar 

  51. MacKerell A D Jr, Bashford D, Bellott M, Dunbrack R L Jr, Evanseck J D, Field M J, Fischer S, Gao J, Guo H and Ha S 1998 All-atom empirical potential for molecular modeling and dynamics studies of proteins J. Phys. Chem. B 102 3586

    CAS  PubMed  Google Scholar 

  52. Perfilieva O A, Pyshnyi D V and Lomzov A A 2019 Molecular dynamics simulation of polarizable gold nanoparticles interacting with sodium citrate J. Chem. Theory Comput. 15 1278

    PubMed  Google Scholar 

  53. Giri A K and Spohr E 2018 Influence of chain length and branching on the structure of functionalized gold nanoparticles J. Phys. Chem. C 122 26739

    CAS  Google Scholar 

  54. Velachi V, Bhandary D, Singh J K and Natália M Cordeiro D S 2016 Striped gold nanoparticles: new insights from molecular dynamics simulations J. Chem. Phys. 144 244710

  55. Kraszewski S, Tarek M, Treptow W and Ramseyer C 2010 Affinity of C60 neat fullerenes with membrane proteins: a computational study on potassium channels ACS Nano 4 4158

  56. Sun Q, Zhang M and Cui S 2019 The structural origin of hydration repulsive force Chem. Phys. Lett. 714 30

    CAS  Google Scholar 

  57. Yesylevskyy S O, Kraszewski S, Picaud F and Ramseyer C 2013 Efficiency of the monofunctionalized C60 fullerenes as membrane targeting agents studied by all-atom molecular dynamics simulations Mol. Membr. Biol. 30 338

    CAS  PubMed  Google Scholar 

  58. Phillips J C, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel R D, Kale L and Schulten K 2005 Scalable molecular dynamics with NAMD J. Comput. Chem. 26 1781

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Fujihara H and Nakai H 2001 Fullerenethiolate-functionalized gold nanoparticles: a new class of surface-confined metal-C60 nanocomposites Langmuir 17 6393

  60. Bonczak B, Lisowski W, Kaminska A, Holdynski M and Fialkowski M 2019 Gold Nanoparticles functionalized with fully conjugated fullerene C60 derivatives as a material with exceptional capability of absorbing electrons J. Phys. Chem. C 123 6229

    CAS  Google Scholar 

  61. Velachi V, Bhandary D, Singh J K and Cordeiro M N D 2015 Structure of mixed self-assembled monolayers on gold nanoparticles at three different arrangements J. Phys. Chem. C 119 3199

    CAS  Google Scholar 

  62. Yu Y, Sun H, Hou T, Wang S and Li Y 2018 Fullerene derivatives act as inhibitors of leukocyte common antigen based on molecular dynamics simulations RSC Adv. 8 13997

    CAS  Google Scholar 

  63. Balamurugan D, Aquino A J, de Dios F, Flores L Jr, Lischka H and Cheung M S 2013 Multiscale simulation of the ground and photo-induced charge-separated states of a molecular triad in polar organic solvent: exploring the conformations, fluctuations, and free energy landscapes J. Phys. Chem. B 117 12065

    CAS  PubMed  Google Scholar 

  64. Natesan H and Bischof J C 2017 Multiscale thermal property measurements for biomedical applications ACS Biomater. Sci. Eng. 3 2669

    CAS  PubMed  Google Scholar 

  65. Sauceda H E, Salazar F, Pérez L A and Garzón I L 2013 Size and shape dependence of the vibrational spectrum and low-temperature specific heat of Au nanoparticles J. Phys. Chem. C 117 25160

    CAS  Google Scholar 

  66. Miyazaki Y, Sorai M, Lin R, Dworkin A, Szwarc H and Godard J 1999 Heat capacity of a giant single crystal of C60 Chem. Phys. Lett. 305 293

    CAS  Google Scholar 

  67. Boucher V M, Cangialosi D, Alegría A, Colmenero J, Pastoriza-Santos I and Liz-Marzan L M 2011 Physical aging of polystyrene/gold nanocomposites and its relation to the calorimetric T g depression Soft Matter 7 3607

    CAS  Google Scholar 

  68. Bolintineanu D S, Lane J M D and Grest G S 2014 Effects of functional groups and ionization on the structure of alkanethiol-coated gold nanoparticles Langmuir 30 11075

    CAS  PubMed  Google Scholar 

  69. Weiss D R, Raschke T M and Levitt M 2008 How hydrophobic buckminsterfullerene affects surrounding water structure J. Phys. Chem. B 112 2981

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Hua L, Huang X, Zhou R and Berne B J 2006 Dynamics of water confined in the interdomain region of a multidomain protein J. Phys. Chem. B 10 3704

    Google Scholar 

  71. Pal S K, Peon J, Bagchi B and Zewail A H 2002 Biological water: femtosecond dynamics of macromolecular hydration J. Phys. Chem. B 106 12376

    CAS  Google Scholar 

  72. Shrake A and Rupley J A 1973 Environment and exposure to solvent of protein atoms Lysozyme and Insulin J. Mol. Biol. 79 351

    CAS  PubMed  Google Scholar 

  73. Lehn R C V and Alexander-Katz A 2013 Structure of mixed-monolayer-protected nanoparticles in aqueous salt solution from atomistic molecular dynamics simulations J. Phys. Chem. C 117 20104

    Google Scholar 

Download references

Acknowledgements

J. Meena Devi and G. Jayabalaji express their sincere thanks to SERB Fast Track Project [SR/FTP/PS-214/2012], New Delhi, India for the financial support. All the simulations were carried out in High-Performance Computing Cluster at SASTRA Deemed University, Thanjavur, Tamilnadu, India. J. Meena Devi acknowledges the Abdus Salam International Centre for Theoretical Physics (ICTP), Trieste, Italy for providing her Regular Associate award for the period of 01 Jan 2019 to 31 Dec 2024.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Meena Devi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 43 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jayabalaji, G., Ramya, L. & Meena Devi, J. Investigation on the structural, thermal and hydration properties of gold-fullerene nanocomposite. J Chem Sci 132, 71 (2020). https://doi.org/10.1007/s12039-020-01773-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-020-01773-6

Keywords

Navigation