Skip to main content

Advertisement

Log in

A newly isolated green alga Chlorella sp. KLSc59: potential for biohydrogen production

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Hydrogen production from microalgae has attracted considerable attention due to its high energy content and as a renewable and environmentally friendly energy source. Various strains of microalgae have been reported to produce “biohydrogen”, but screening for new strains is still necessary to discover strains with higher hydrogen yields. A newly isolated hydrogen-producing green alga was screened and labeled Chlorella sp. KLSc59. The effect of extracellular pH, light intensity, external carbon sources, reducing agents, and nutrient deprivation on biohydrogen production of Chlorella sp. KLSc59 were investigated. Hydrogen yield was higher under anaerobic conditions. Under external pH 7.2 with 53.2 μmol photons m−2 s−1 light intensity and using acetate as a carbon source, the optimum hydrogen yield was 281 μmol H2 mg−1 Chl. Nutrient deprivation reduced the hydrogen yield. Several reducing agents were assessed, and 1 mM ethanol enhanced yield by 3 times for 850 μmol H2 mg−1 Chl, and 1 mM sodium dithionite increased yield by 2.7 times for 750 μmol H2 mg−1 Chl. Significantly, our new strain showed higher hydrogen yields ranging from 1.5 to 68 times compared with other microalgae. Thus, Chlorella sp. KLSc59 showed valuable potential for biohydrogen production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Allakhverdiev S, Thavasi VK, Reslavski VD, Zharmukhamedov SK, Klimov VV, Ramakrishna S, Los DA, Mimuro MN, Ishihara H, Carpentier R (2010) Photosynthetic hydrogen production. J Photochem Photobiol C 11:101–113

    Article  CAS  Google Scholar 

  • Aparicio PJ, Azuara MP, Ballesteros A, Fernandez VM (1985) Effects of light intensity and oxidized nitrogen sources on hydrogen production by Chlamydomonas reinhardii. Plant Physiol 78:803–806

    Article  CAS  Google Scholar 

  • Batyrova KA, Tsygankov AA, Kosourov SN (2012) Sustained hydrogen photoproduction by phosphorus deprived Chlamydomonas reinhardtii cultures. Int J Hydrog Energy 37:8834–8839

    Article  CAS  Google Scholar 

  • Batyrova K, Gavrisheva A, Ivanova E, Liu JG, Tsygankov A (2015) Sustainable hydrogen photoproduction by phosphorus-deprived marine green microalgae Chlorella sp. Int J Mol Sci 16:2705–2716

  • Chia SR, Ong HC, Chew KW, Show PL, Phang SM, Ling TC, Nagarajan D, Lee DJ, Chang JS (2018) Sustainable approaches for algae utilisation in bioenergy production. Renew Energy 129:838–852

    Article  CAS  Google Scholar 

  • Gabrielyan L, Hakobyan L, Trchounian A (2017) Characterization of light-dependent hydrogen production by new green microalga Parachlorella kessleri in various conditions. J Photochem Photobiol B 175:207–210

    Article  CAS  Google Scholar 

  • Gibbs M, Gfeller RP, Chen C (1986) Fermentative metabolism of Chlamydomonas reinhardtii.III: photoassimilation of acetate. Plant Physiol 82:160–166

    Article  CAS  Google Scholar 

  • Han HL, Liu BQ, Yang HJ, Shen JQ (2012) Effect of carbon sources on the photobiological production of hydrogen using Rhodobacter sphaeroides RV. Int J Hydrog Energy 37:12167–12174

    Article  CAS  Google Scholar 

  • Juneja A, Ceballos RM, Murthy GS (2013) Effects of environmental factors and nutrient availability on the biochemical composition of algae for biofuels production: a review. Energies 6:4607–4638

    Article  Google Scholar 

  • Khosravitabar F (2020) Microalgal biohydrogen photoproduction: scaling up challenges and the ways forward. J Appl Phycol 32:277–289

    Article  Google Scholar 

  • Kosourov SN, Seibert M (2009) Hydrogen photoproduction by nutrient-deprived Chlamydomonas reinhardtii cells immobilized within thin alginate films under aerobic and anaerobic conditions. Biotechnol Bioeng 102:50–58

    Article  CAS  Google Scholar 

  • Kosourov S, Patrusheva E, Ghirardi ML, Seibert M, Tsygankov A (2007) A comparison of hydrogen photoproduction by sulfur-deprived Chlamydomonas reinhardtii under different growth conditions. J Biotechnol 128:776–787

    Article  CAS  Google Scholar 

  • Kruse O, Hankamer B (2010) Microalgal hydrogen production. Curr Opin Biotechnol 21:238–243

    Article  CAS  Google Scholar 

  • Laurinavichene T, Tolstygina I, Tsygankov A (2004) The effect of light intensity on hydrogen production by sulfur-deprived Chlamydomonas reinhardtii. J Biotechnol 114:143–151

    Article  CAS  Google Scholar 

  • Laurinavichene TV, Fedorov AS, Ghirardi ML, Seibert M, Tsygankov AA (2006) Demonstration of sustained hydrogen photoproduction by immobilized, sulfur-deprived Chlamydomonas reinhardtii cells. Int J Hydrog Energy 31:659–667

    Article  CAS  Google Scholar 

  • Lee YK, Shen H (2004) Basic culturing techniques. In: Richmond A (ed) Handbook of microalgal culture. Blackwell Science, Oxford, pp 40–56

    Google Scholar 

  • Lee JY, Chen XJ, Lee EJ, Min KS (2012) Effects of pH and carbon sources on biohydrogen production by co-culture of Clostridium butyricum and Rhodobacter sphaeroides. J Microbiol Biotechnol 22:400–406

    Article  CAS  Google Scholar 

  • Lorencini P, Siqueira MR, Maniglia BC, Tapia DR, Maintinguer SI, Reginatto V (2016) Biohydrogen production from liquid and solid fractions of sugarcane bagasse after optimized pretreatment with hydrochloric acid. Waste Biomass Valoriz 7:1017–1029

    Article  CAS  Google Scholar 

  • Maneeruttanarungroj C, Phunpruch S (2017) Effect of pH on biohydrogen production in green alga Tetraspora sp. CU2551. Energy Procedia 138:1085–1092

    Article  CAS  Google Scholar 

  • Maneeruttanarungroj C, Lindblad P, Incharoensakdi A (2010) A newly isolated green alga, Tetraspora sp. CU2551, from Thailand with efficient hydrogen production. Int J Hydrog Energy 35:13193–13199

    Article  CAS  Google Scholar 

  • Maswanna T, Phunpruch S, Lindblad P, Maneeruttanarungroj C (2018) Enhanced hydrogen production by optimization of immobilized cells of the green alga Tetraspora sp CU2551 grown under anaerobic condition. Biomass Bioenergy 111:88–95

    Article  CAS  Google Scholar 

  • Melis A (2002) Green alga hydrogen production: progress, challenges and prospects. Intl J Hydrogen Energy 27:1217–1228

    Article  CAS  Google Scholar 

  • Melis A, Zhang L, Forestier M, Ghirardi ML, Seibert M (2000) Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. Plant Physiol 122:127–135

    Article  CAS  Google Scholar 

  • Meseck SL, Alix JH, Wikfors GH (2005) Photoperiod and light intensity effects on growth and utilization of nutrients by the aquaculture feed microalga, Tetraselmis chui (PLY429). Aquaculture 246:393–404

    Article  Google Scholar 

  • Oncel SVSF (2011) Effect of light intensity and the light: dark cycles on the long term hydrogen production of Chlamydomonas reinhardtii by batch cultures. Biomass Bioenergy 35:1066–1074

    Article  CAS  Google Scholar 

  • Papazi A, Gjindali AI, Kastanaki E, Assimakopoulos K, Stamatakis K, Kotzabasis K (2014) Potassium deficiency, a "smart" cellular switch for sustained high yield hydrogen production by the green alga Scenedesmus obliquus. Int J Hydrog Energy 39:19452–19464

    Article  CAS  Google Scholar 

  • Rashid N, Choi W, Lee K (2012) Optimization of two-staged bio-hydrogen production by immobilized Microcystis aeruginosa. Biomass Bioenergy 36:241–249

    Article  CAS  Google Scholar 

  • Sekoai PT, Kana EBG (2014) Semi-pilot scale production of hydrogen from organic fraction of solid municipal waste and electricity generation from process effluents. Biomass Bioenergy 60:156–163

    Article  CAS  Google Scholar 

  • Sekoai PT, Ayeni AO, Daramola MO (2019) Parametric optimization of biohydrogen production from potato waste and scale-up study using immobilized anaerobic mixed sludge. Waste Biomass Valoriz 10:1177–1189

    Article  CAS  Google Scholar 

  • Song W, Rashid N, Choi W, Lee K (2011) Biohydrogen production by immobilized Chlorella sp using cycles of oxygenic photosynthesis and anaerobiosis. Bioresour Technol 102:8676–8681

    Article  CAS  Google Scholar 

  • Stavropoulos KP, Kopsahelis A, Zafiri C, Kornaros M (2016) Effect of pH on continuous biohydrogen production from end-of-life dairy products (EoL-DPs) via dark fermentation. Waste Biomass Valoriz 7:753–764

    Article  CAS  Google Scholar 

  • Sunda W (1975) The relationship between cupric ion activity and the toxicity of copper to phytoplankton. PhD Thesis, Massachusetts Institute of Technology, USA

  • Touloupakis E, Rontogiannis G, Benavides AMS, Cicchi B, Ghanotakis DF, Torzillo G (2016) Hydrogen production by immobilized Synechocystis sp PCC 6803. Int J Hydrog Energy 41:15181–15186

    Article  CAS  Google Scholar 

  • Trchounian K, Müller N, Schink B, Trchounian A (2017) Glycerol and mixture of carbon sources conversion to hydrogen by Clostridium beijerinckii DSM791 and effects of various heavy metals on hydrogenase activity. Int J Hydrog Energy 42:7875–7882

    Article  CAS  Google Scholar 

  • Tsygankov AA, Kosourov SN, Tolstygina IV, Ghirardi ML, Seibert M (2006) Hydrogen production by sulfur-deprived Chlamydomonas reinhardtii under photoautotrophic conditions. Int J Hydrog Energy 31:1574–1584

    Article  CAS  Google Scholar 

  • Uyar B, Eroglu I, Yucel M, Gunduz U, Turker L (2007) Effect of light intensity, wavelength and illumination protocol on hydrogen production in photobioreactors. Int J Hydrog Energy 32:4670–4677

    Article  CAS  Google Scholar 

  • Wang X, Hao CB, Zhang F, Feng CP, Yang YN (2011) Inhibition of the growth of two blue-green algae species (Microsystis aruginosa and Anabaena spiroides) by acidification treatments using carbon dioxide. Bioresour Technol 102:5742–5748

    Article  CAS  Google Scholar 

  • Wei LZ, Yi J, Wang LJ, Huang TT, Gao FD, Wang QX, Ma WM (2017) Light intensity is important for hydrogen production in NaHSO3 treated Chlamydomonas reinhardtii. Plant Cell Physiol 58:451–457

    CAS  PubMed  Google Scholar 

  • Wutthithien P, Lindblad P, Incharoensakdi A (2019) Improvement of photobiological hydrogen production by suspended and immobilized cells of the N2-fixing cyanobacterium Fischerella muscicola TISTR 8215. J Appl Phycol 31:3527–3536

    Article  CAS  Google Scholar 

  • Xia A, Jacob A, Herrmann C, Murphy JD (2016) Fermentative bio-hydrogen production from galactose. Energy 96:346–354

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the research grants by the Faculty of Science, King Mongkut’s Institute of Technology Ladkrabang to C. Maneeruttanarungroj (2562-01-05-36).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cherdsak Maneeruttanarungroj.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sirawattanamongkol, T., Maswanna, T. & Maneeruttanarungroj, C. A newly isolated green alga Chlorella sp. KLSc59: potential for biohydrogen production. J Appl Phycol 32, 2927–2936 (2020). https://doi.org/10.1007/s10811-020-02140-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-020-02140-1

Keywords

Navigation