Skip to main content
Log in

Growth and photosynthetic characteristics of Gracilaria lemaneiformis (Rhodophyta) and Ulva lactuca (Chlorophyta) cultured under fluorescent light and different LED light

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

The effects of fluorescent light and different light-emitting diodes (LEDs) with white, red, green, and blue light on two macroalgal species, Gracilaria lemaneiformis (Rhodophyta) and Ulva lactuca (Chlorophyta), have been investigated via the measurements of growth rates, photosynthesis, and biochemical contents of pigments (i.e., chlorophyll a, carotenoids, and phycobilin) and soluble protein. In the two species, white LEDs showed similar effects to fluorescent lamps on the relative growth rates (RGRs) and gross maximum photosynthetic rate (Pmax). In addition, green LEDs contributed to the highest RGRs and Pmax in G. lemaneiformis. Interestingly, when compared with fluorescent lamps, green LEDs resulted in a significantly higher Pmax in U. lactuca. Furthermore, blue LEDs contributed to the highest RGRs of U. lactuca, while the red LEDs led to the lowest RGRs of U. lactuca. Overall, our study suggests that LEDs are alternative monochromatic light sources to fluorescent lamps in G. lemaneiformis and U. lactuca cultivation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aguilera J, Gordillo FJL, Karsten U, Figueroa FL, Niell FX (2000) Light quality effect on photosynthesis and efficiency of carbon assimilation in the red alga Porphyra leucosticta. J Plant Physiol 157:86–92

    CAS  Google Scholar 

  • Beer S, Eshel A (1985) Determining phycoerythrin and phycocyanin concentrations in aqueous crude extracts of red algae. Aust J Mar Freshw Res 36:785–792

    Article  CAS  Google Scholar 

  • Berner T, Dubinsky Z, Wyman K, Falkowski P (1989) Photoadaptation and the “package” effect in Dunaliella tertiolecla (Chlorophyceae). J Phycol 25:70–78

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Brown CS, Schuerger AC, Sager JC (1995) Growth and photomorphogenesis of pepper plants under red light-emitting diodes with supplemental blue or far-red lighting. J Am Soc Hortic Sci 120:808813

    Google Scholar 

  • Chen CY, Yeh KL, Aisyah R, Lee DJ, Chang JS (2011) Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresour Technol 102:71–81

    Article  CAS  Google Scholar 

  • Crawford MH (2009) LEDs for solid-state lighting: performance challenges and recent advances. IEEE J Sel Top Quantum Electron 15:1028–1040

    Article  CAS  Google Scholar 

  • Darko E, Heydarizadeh P, Schoefs B, Sabzalian MR (2014) Photosynthesis under artificial light: the shift in primary and secondary metabolism. Phil Trans R Soc B 369:20130243

  • Dayani S, Heydarizadeh P, Sabzalian M (2016) Efficiency of light-emitting diodes for future photosynthesis. In: Pessarakli M (ed) Handbook of photosynthesis, 3rd edn. CRC Press, Boca Raton pp, pp 761–783

    Google Scholar 

  • Dring MJ (1981) Chromatic adaptation of photosynthesis in benthic marine algae: an examination of its ecological significance using a theoretical model. Limnol Oceanogr 26:271–284

    Article  Google Scholar 

  • Dutta Gupta S, Jatothu B (2013) Fundamentals and applications of light-emitting diodes (LEDs) in in vitro plant growth and morphogenesis. Plant Biotechnol Rep 7:211–220

    Article  Google Scholar 

  • Figueroa FL, Aguilera J, Jiménez C, Vergara JJ, Robles MD, Niell FX (1995a) Growth, pigment synthesis and nitrogen assimilation in the red alga Porphyra sp. (Bangiales, Rodophyta) under blue and red light. Sci Mar 59:9–20

    Google Scholar 

  • Figueroa FL, Aguilera J, Niell FX (1995b) Red and blue light regulation of growth and photosynthetic metabolism in Porphyra umbilicalis (Bangiales, Rhodophyta). Eur J Phycol 30:11–18

    Article  Google Scholar 

  • Ghimire BK, Lee JG, Yoo JH, Kim JK, Yu CY (2017) The influence of light-emitting diodes (LEDs) on the growth, antioxidant activities, and metabolites in adventitious root of Panax ginseng C.A. Meyer. In: Dutta Gupta S (ed) Light emitting diodes for agriculture: smart lighting. Springer, Singapore, pp 259–272

    Chapter  Google Scholar 

  • Hanus-Fajerska E, Wojciechowska R (2017) Impact of light-emitting diodes (LEDs) on propagation of orchids in tissue culture. In: Dutta Gupta S (ed) Light emitting diodes for agriculture: smart lighting. Springer, Singapore, pp 305–320

    Chapter  Google Scholar 

  • Haxo FT, Blinks LR (1950) Photosynthetic action spectra of marine algae. J Gen Physiol 33:389–422

    Article  CAS  Google Scholar 

  • Henley W (1993) On the measurement and interpretation of photosynthetic light-response curves in algae in the context of photoinhibition and diel changes. J Phycol 29:729–739

    Article  Google Scholar 

  • Kang L-K, Huang Y-J, Lim W-T, Hsu P-H, Hwang P-A (2020) Growth, pigment content, antioxidant activity, and phytoene desaturase gene expression in Caulerpa lentillifera grown under different combinations of blue and red light-emitting diodes. J Appl Phycol. https://doi.org/10.1007/s10811-020-02082-8

  • Katsuda T, Lababpour A, Shimahara K, Katoh S (2004) Astaxanthin production by Haematococcus pluvialis under illumination with LEDs. Enzym Microb Technol 35:81–86

    Article  CAS  Google Scholar 

  • Khan N, Abas N (2011) Comparative study of energy saving light sources. Renew Sust Energ Rev 15:296–309

    Article  Google Scholar 

  • Kim JK, Mao Y, Kraemer G, Yarish C (2015) Growth and pigment content of Gracilaria tikvahiae McLachlan under fluorescent and LED lighting. Aquaculture 436:52–57

    Article  CAS  Google Scholar 

  • Korbee N, Figueroa FL, Aguilera J (2005) Effect of light quality on the accumulation of photosynthetic pigments, proteins and mycosporine-like amino acids in the red alga Porphyra leucosticta (Bangiales, Rhodophyta). J Photochem Photobiol B 80:71–78

    Article  CAS  Google Scholar 

  • Kurilčik A, Miklušytė-Čanova R, Dapkūnienė S, Žilinskaitė S, Kurilčik G, Tamulaitis G, Duchovskis P, Žukauskas A (2008) In vitro culture of Chrysanthemum plantlets using light-emitting diodes. Cent Eur J Biol 3:161–167

    Google Scholar 

  • Lahaye M, Jegou D (1993) Chemical and physical-chemical characteristics of dietary fibres from Ulva lactuca (L.) Thuret and Enteromorpha compressa (L.) Grev. J Appl Phycol 5:195–200

  • Le B, Shin J-A, Kang M-G, Sun S, Yang SH, Chung G (2018) Enhanced growth rate and ulvan yield of Ulva pertusa using light-emitting diodes (LEDs). Aquac Int 26:937–946

    Article  Google Scholar 

  • Li H, Yu X, Jin Y, Zhang W, Liu Y (2008) Development of an eco-friendly agar extraction technique from the red seaweed Gracilaria lemaneiformis. Bioresour Technol 99:3301–3305

    Article  CAS  Google Scholar 

  • López-Figueroa F, Rüdiger W (1991) Stimulation of nitrate net uptake and reduction by red and blue light and reversion by far-red light in the green alga Ulva rigida. J Phycol 27:389–394

    Article  Google Scholar 

  • Ma R, Thomas-Hall SR, Chua ET, Eltanahy E, Netzel ME, Netzel G, Lu Y, Schenk PM (2018) LED power efficiency of biomass, fatty acid, and carotenoid production in Nannochloropsis microalgae. Bioresour Technol 252:118–126

    Article  CAS  Google Scholar 

  • Marchetti J, Bougaran G, Jauffrais T, Lefebvre S, Rouxel C, Saint-Jean B, Lukomska E, Robert R, Cadoret JP (2013) Effects of blue light on the biochemical composition and photosynthetic activity of Isochrysis sp. (T-iso). J Appl Phycol 25:109–119

  • Miki O, Okumura C, Marzuki M, Tujimura Y, Fujii T, Kosugi C, Kato T (2017) Contrasting effects of blue and red LED irradiations on the growth of Sargassum horneri during the germling and immature stages. J Appl Phycol 29:1461–1469

    Article  CAS  Google Scholar 

  • Muthuvelan B, Fujimori K, Murugan C, Kulandaivelu G (1997) Influence of irradiation quality on photosynthetic pigments, saccharides, nitrate reductase activity, thylakoid organization and growth of Ulva pertusa. Biol Plant 40:211–218

    Article  CAS  Google Scholar 

  • Poudel PR, Kataoka I, Mochioka R (2008) Effect of red- and blue-light-emitting diodes on growth and morphogenesis of grapes. Plant Cell Tissue Organ Cult 92:147–153

    Article  Google Scholar 

  • Qi Z, Liu H, Li B, Mao Y, Jiang Z, Zhang J, Fang J (2010) Suitability of two seaweeds, Gracilaria lemaneiformis and Sargassum pallidum, as feed for the abalone Haliotis discus hannai Ino. Aquaculture 300:189–193

    Article  Google Scholar 

  • Son K-H, Jeon Y-M, Oh M-M (2016) Application of supplementary white and pulsed light-emitting diodes to lettuce grown in a plant factory with artificial lighting. Hortic Environ Biotechnol 57:560–572

    Article  Google Scholar 

  • Teo CL, Atta M, Bukhari A, Taisir M, Yusuf AM, Idris A (2014) Enhancing growth and lipid production of marine microalgae for biodiesel production via the use of different LED wavelengths. Bioresour Technol 162:38–44

    Article  CAS  Google Scholar 

  • Terashima I, Fujita T, Inoue T, Chow WS, Oguchi R (2009) Green light drives leaf photosynthesis more efficiently than red light in strong white light: revisiting the enigmatic question of why leaves are green. Plant Cell Physiol 50:684–697

    Article  CAS  Google Scholar 

  • Tsekos I, Niell FX, Aguilera J, López-Figueroa F, Delivopoulos SG (2002) Ultrastructure of the vegetative gametophytic cells of Porphyra leucosticta (Rhodophyta) grown in red, blue and green light. Phycol Res 50:251–264

    Article  Google Scholar 

  • Wahbeh MI (1997) Amino acid and fatty acid profiles of four species of macroalgae from Aqaba and their suitability for use in fish diets. Aquaculture 159:101–109

    Article  CAS  Google Scholar 

  • Wellburn AR (1994) The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol 144:307–313

    Article  CAS  Google Scholar 

  • Xu S, Zhang L, Wu Q, Liu X, Wang S, You C, Li Y (2011) Evaluation of dried seaweed Gracilaria lemaneiformis as an ingredient in diets for teleost fish Siganus canaliculatus. Aquac Int 19:1007–1018

    Article  CAS  Google Scholar 

  • Yang Y, Chai Z, Wang Q, Chen W, He Z, Jiang S (2015) Cultivation of seaweed Gracilaria in Chinese coastal waters and its contribution to environmental improvements. Algal Res 9:236–244

    Article  Google Scholar 

  • Yeh N, Chung J-P (2009) High-brightness LEDs—energy efficient lighting sources and their potential in indoor plant cultivation. Renew Sust Energ Rev 13:2175–2180

    Article  CAS  Google Scholar 

  • Zou D, Gao K (2013) Thermal acclimation of respiration and photosynthesis in the marine macroalga Gracilaria lemaneiformis (Gracilariales, Rhodophyta). J Phycol 49:61–68

    Article  Google Scholar 

Download references

Funding

This study was supported by the Natural Science Foundation of Guangdong Province (No. 2018B030311029 and 2019B121202001), Science and Technology Planning Project of Guangzhou (Nos. 201904010287).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinghui Zou.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, J., Liu, Z. & Zou, D. Growth and photosynthetic characteristics of Gracilaria lemaneiformis (Rhodophyta) and Ulva lactuca (Chlorophyta) cultured under fluorescent light and different LED light. J Appl Phycol 32, 3265–3272 (2020). https://doi.org/10.1007/s10811-020-02151-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-020-02151-y

Keywords

Navigation