Skip to main content
Log in

Abstract

One of the major issues of drilling operations pertains to the formation of burrs, which greatly influences the accuracy of the manufactured parts, and, thus, the capability to meet the desired performance of the part. To remove or prevent these burrs, their geometry must be measured accurately, even though they are sharp and irregular in shape. The accurate measurement of the geometry of a burr will lead to the development of a proper deburring method. In this work, the authors describe a simple and convenient new measurement technique for drilling burr profiles and a developed drilling burr measurement system based on surface area. The new method presented in this research aims at providing a comparative evaluation of the height, arc length and area of the burr, as well as its geometrical characteristics. When the average height and arc length measurement methods are compared with the area measurement method, large deviations in burr height are detected. In particular, these deviations increase more in non-uniform burrs. In the measurement of burr size, the new developed method is based on area measurement and is carried out using a computer. Therefore, there is no deviation between the measurements. In contrast, the average deviation ranges for the height and arc length measurement methods are found to be 9.94–48.14% and 6.07–18.82%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Davim, J. P., & Jackson, M. J. (2013). Nano and micromachining. New York: Wiley.

    Google Scholar 

  2. Bissacco, G., Hansen, H. N., & De Chiffre, L. (2006). Size effects on surface generation in micro milling of hardened tool steel. CIRP Annals-Manufacturing Technology, 55(1), 593–596.

    Article  Google Scholar 

  3. Bordinassi, É. C., Almeida Filho, C. O. C. D., Stipkovic Filho, M., & Batalha, G. F. (2004). Controle de rebarbação e de forças de corte. Maquinas e Metais, 40(464), 104–119.

    Google Scholar 

  4. Kaminise, A. K. (2004). Estudo da formação de rebarbas no torneamento cilíndrico externo de aço-carbono ABNT 1045.

  5. Fabrizio, M., Marco, S., Stefania, B., & Enrico, S. (2018). Novel method for burrs quantitative evaluation in micro-milling. Precision Engineering, 54, 379–387.

    Article  Google Scholar 

  6. Stein, J. M., & Dornfeld, D. A. (1997). Burr formation in drilling miniature holes. Annals CIRP, 46(17), 63–66.

    Article  Google Scholar 

  7. Parenti, P., Masato, D., Sorgato, M., Lucchetta, G., & Annoni, M. (2017). Surface footprint in molds micro milling and effect on part demold ability in micro injection molding. Journals of Manufacturing Processes., 29, 160–174.

    Article  Google Scholar 

  8. International Standard ISO 13715:2000, Technical drawings—edges of undefined shape—vocabulary and indications.

  9. David, P., Andreas, K., Sophie, V., Ngozi, A., & Mongi, A. (2005). 3D CAD model generation of mechanical parts using coded-pattern projection and laser triangulation systems. Assembly Automation., 25(3), 230–238.

    Article  Google Scholar 

  10. Aurich, J. C. (2006). Untersuchung zur Beherrschung der Sauberkeit von zerspanend hergestellten Bauteilen. Ergebnisworkshop, Lehrstuhl für Fertigungstechnik und Betriebsorganisation, Kaiserslautern Technische Universität.

  11. Leopold, J., & Schmidt, G. (2004). Methods of burr measurement and burr detection. VDI-Berichte, 1860, 223–229.

    Google Scholar 

  12. Aurich, J. C., Dornfeld, D., Arrazola, P. J., Franke, V., Leitz, L., & Min, S. (2009). Burr-analysis, control and removal. CIRP Annals-Manufacturing Technology, 58(2), 519–542.

    Article  Google Scholar 

  13. Kim, W. S., & Sung-Lim, K. (2003). Development of Effective Measurement Method for Burr Geometry. JKSPE, 20(6), 147. (81–87).

    Google Scholar 

  14. Schafer, F. (1975). Entgraten. Mainz: Krausskopfverlag.

    Google Scholar 

  15. Nakao, Y., & Watanabe, Y. (2006). Measurements and evaluations of drilling burr profile. P I Mechanical Engineering B-Journal of Engineering, 220(4), 513–523.

    Google Scholar 

  16. Sokolowski, A. (2010). On burr height estimation based on axial drilling force. Journal of Achievements in Materials and Manufacturing Engineering, 43, 734–742.

    Google Scholar 

  17. Aurich, J. C., Dornfeld, D., Arrazola, P. J., Franke, V., Leitz, L., & Min, S. (2009). Burrs-analysis, control and removal. CIRP Annals-Manufacturing Technolgy, 58, 519–542.

    Article  Google Scholar 

  18. Mondal, N., Sardar, B. S., Halder, R. N., & Das, S. (2014). Observation of drilling burr and finding out the condition for minimum burr formation. International Journal of Manufacturing Engineering, 2014, 208293. https://doi.org/10.1155/2014/208293.

    Article  Google Scholar 

  19. Das, A., & Barik, T. (2014). An experimental study on the burr formation in drilling of aluminum channels of rectangular section. 5th International & 26th All India Manufacturing Technology, Design and Research Conference (AIMTDR 2014) 2014 December 12th–14th. Guwahati: IIT.

    Google Scholar 

  20. Costa, E. S., Silva, M. B., & Machado, A. R. (2009). Burr produced on the drilling process as a function of tool wear and lubricant-coolant conditions. Journal of the Brazilian Society of Mechanical Sciences and Engineering., 31(1), 57–63.

    Article  Google Scholar 

  21. Bi, S. S., & Liang, J. (2011). Robotic drilling system for titanium structures. International Journal of Advanced Manufacturing Technology, 5(8), 767–774.

    Article  Google Scholar 

  22. Niknam, S. A., Zedan, Y., & Songmene, V. (2014). Machining burrs formation & deburring of aluminium alloys. In Light metal alloys applications (pp. 99–122).

  23. Pilny, L., Chiffre, L., Piska, M., & Villumsen, M. F. (2012). Hole quality and burr red in drilling aluminum sheets. CIRP-JMST, 5(2), 102–107.

    Google Scholar 

  24. Hoang, H. P., & Ko, S. L. (2010). Burr measurement systemfor drilled hole at inclined exit surface. In Burrs-analysis, control and removal (pp. 157–165). Berlin: Springer.

    Chapter  Google Scholar 

  25. Rimpault, X., Chatelain, J. F., Klemberg-Sapieha, J. E., & Balazinski, M. (2017). Burr height monitoring while drilling CFRP/titanium/aluminium stacks. Mechanics and Industry, 18(1), 114.

    Article  Google Scholar 

  26. Melkote, S., Newton, T., Hellstern, C., Morehouse, J. B., & Turner, S. (2010). Interfacial burr formation in drilling of stacked aerospace materials Burrs-analysis, control and removal (pp. 89–98). Berlin: Springer.

    Book  Google Scholar 

  27. Aziz, M., Ohnishi, O., & Onikura, H. (2012). Advanced burr-free hole machining using newly developed micro compound tool. International Journal of Precision Engineering and Manufacturing, 13(6), 947–953.

    Article  Google Scholar 

  28. Qiu, X., Li, P., Li, C., Niu, Q., Chen, A., Ouyang, P., et al. (2019). New compound drill bit for damage reduction in drilling CFRP. International Journal of Precision Engineering and Manufacturing-Green Technology, 6(1), 75–87.

    Article  Google Scholar 

  29. Curtis, G. F., & Patrick, W. O. (2004). Applied Numerical Analysis (7th ed.). London: Pearson.

    Google Scholar 

  30. ENISO‐4287. (1997). Geometrical product specifications (GPS)–surface texture: profile method–terms, definitions and surface texture parameters.

  31. Uriarte, L., Herrero, A., Zatarain, M., Santiso, G., de Lacalle, L. L., Lamikiz, A., et al. (2007). Error budget and stiffness chain assessment in a micromilling machine equipped with tools less than 03 mm in diameter. Precision Engineering, 31(1), 1–12.

    Article  Google Scholar 

  32. Hashimura, M., Hassamontr, J., & Dornfeld, D. A. (1999). Effect of in-plane exit angle and rake angles on burr height and thickness in face milling operation. Journal of Manufacturing Science and Engineering and Technology ASME, 121(1), 13–19.

    Article  Google Scholar 

  33. Park, I. W., & Dornfeld, D. A. (2000). A study of burr formation processes using the finite element method: part II—the influences of exit angle, rake angle, and backup material on burr formation processes. Journal of Engineering Materials and Technology, Transaction of ASME, 122(2), 221–228.

    Article  Google Scholar 

  34. Waqar, S., Asad, S., Ahmad, S., Abbas, C. A., & Elahi, H. (2017). Effect of drilling parameters on hole quality of Ti-6Al-4V titanium alloy in dry drilling. Materials Science Forum, 880, 33–36.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erkan Bahçe.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahçe, E., Özdemir, B. Burr Measurement Method Based on Burr Surface Area. Int. J. of Precis. Eng. and Manuf.-Green Tech. 8, 1287–1296 (2021). https://doi.org/10.1007/s40684-020-00228-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-020-00228-0

Keywords

Navigation