Skip to main content
Log in

Mineral transition and formation mechanism of calcium aluminate compounds in CaO-Al2O3-Na2O system during high-temperature sintering

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

The mineral transition and formation mechanism of calcium aluminate compounds in CaO-Al2O3-Na2O system during the high-temperature sintering process were systematically investigated using DSC-TG, XRD, SEM-EDS, FTIR, and Raman spectra, and the crystal structure of Na4Ca3(AlO2)10 was also simulated by Material Studio software. The results indicated that the minerals formed during the sintering process included Na4Ca3(AlO2)10, CaOAl2O3, and 12CaO·7Al2O3, and the content of Na4Ca3(AlO2)10 could reach 92wt% when sintered at 1200°C for 30 min. The main formation stage of Na4Ca3(AlO2)10 occurred at temperatures from 970 to 1100°C, and the content could reach 82wt% when the reaction temperature increased to 1100°C. The crystal system of Na4Ca3(AlO2)10 was tetragonal, and the cells preferred to grow along crystal planes (110) and (210). The formation of Na4Ca3(AlO2)10 was an exothermic reaction that followed a secondary reaction model, and its activation energy was 223.97 kJ/mol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. N.K. Lee, K.T. Koh, S.H. Park, and G.S. Ryu, Microstructural investigation of calcium aluminate cement-based ultra-high performance concrete (UHPC) exposed to high temperatures, Cem. Concr. Res., 102(2017), p. 109.

    Article  CAS  Google Scholar 

  2. Y.Y. Zhang, W. Lu, Y.H. Qi, and Z.S. Zou, Recovery of iron and calcium aluminate slag from high-ferrous bauxite by high-temperature reduction and smelting process, Int. J. Miner. Metall. Mater., 23(2016), No. 8, p. 881.

    Article  CAS  Google Scholar 

  3. R.M. Parreira, T.L. Andrade, A.P. Luz, V.C. Pandolfelli, and I.R. Oliveira, Calcium aluminate cement-based compositions for biomaterial applications, Ceram. Int., 42(2016), No. 10, p. 11732.

    Article  CAS  Google Scholar 

  4. J.H. Chen, H.Y. Chen, M.W. Yan, Z. Cao, and W.J. Mi, Formation mechanism of calcium hexaluminate, Int. J. Miner. Metall. Mater., 23(2016), No. 10, p. 1225.

    Article  CAS  Google Scholar 

  5. B. Hallstedl, Assessment of the CaO−Al2O3 syseem, J. Am. Ceram. Soc., 73(1990), No. 1, p. 15.

    Article  Google Scholar 

  6. X.L. Pan, D. Zhang, Y. Wu, and H.Y. Yu, Synthesis and characterization of calcium aluminate compounds from gehlenite by high-temperature solid-state reaction, Ceram. Int., 44(2018), No. 12, p. 13544.

    Article  CAS  Google Scholar 

  7. H. Verweij and C.M.P.M. Saris, Phase formation in the system Na2O·Al2O3−CaO·A12O3−Al2O3 at 1200 °C in air, J. Am. Ceram. Soc., 69(1986), No. 2, p. 94.

    Article  CAS  Google Scholar 

  8. D. Zhang, W. Zhang, H.L. Sun, and B. Wang, Mineral transition mechanism of calcium aluminate with sodium doping during high-temperature sintering reaction, J. Alloys Compd., 771(2019), p. 195.

    Article  CAS  Google Scholar 

  9. J. Yang, Q. Wang, J.Q. Zhang, O. Ostrovski, C. Zhang, and D.X. Cai, Effect of Al2O3/(B2O3 + Na2O) ratio on CaO−Al2O3-based mold fluxes: Melting property, viscosity, heat transfer, and structure, Metall. Mater. Trans. B, 50(2019), No. 6, p. 2794.

    Article  CAS  Google Scholar 

  10. J. Shen, L. Gong, and Q.X. Li, Structure and antibacterial property of Na2O doped C12A7, Chin. J. Inorg. Chem., 27(2011), No. 2, p. 353.

    CAS  Google Scholar 

  11. C. Ostrowski and J. Żelazny, Solid solutions of calcium aluminates C3A, C12A7 and CA with sodium oxide, J. Therm. Anal. Calorim., 75(2004), No. 3, p. 867.

    Article  CAS  Google Scholar 

  12. H.Y. Yu, X.L. Pan, B. Wang, W. Zhang, H.L. Sun, and S.W. Bi, Effect of Na2O on the formation of calcium aluminates in CaO−Al2O3−SiO2 system, Trans. Nonferrous Met. Soc. China, 22(2012), No. 12, p. 3108.

    Article  CAS  Google Scholar 

  13. D. Zhang, X.L. Pan, H.Y. Yu, and Y.C. Zhai, Mineral transition of calcium aluminate clinker during high-temperature sintering with low-lime dosage, J. Mater. Sci. Technol., 31(2015), No. 12, p. 1244.

    Article  CAS  Google Scholar 

  14. Y.P. Tian, X.L. Pan, H.Y. Yu, and G.F. Tu, Formation mechanism of calcium aluminate compounds based on high-temperature solid-state reaction, J. Alloys Compd., 670(2016), p. 96.

    Article  CAS  Google Scholar 

  15. P. McMillan and B. Piriou, Raman spectroscopy of calcium aluminate glasses and crystals, J. Non-Cryst. Solids, 55(1983), No. 2, p. 221.

    Article  CAS  Google Scholar 

  16. K. Kajihara, S. Matsuishi, K. Hayashi, M. Hirano, and H. Hosono, Vibrational dynamics and oxygen diffusion in a nanoporous oxide ion conductor 12CaO·7Al2O3 studied by 18O labeling and micro-Raman spectroscopy, J. Phys. Chem. C, 111(2007), No. 40, p. 14855.

    Article  CAS  Google Scholar 

  17. P. McMillan, B. Piriou, and A. Navrotsky, A Raman-spectroscopic study of glasses along the joins silica-calcium aluminate, silica-sodium aluminate, and silica-potassium aluminate, Geochim. Cosmochim. Acta, 46(1982), No. 11, p. 2021.

    Article  CAS  Google Scholar 

  18. A. Meiszterics, L. Rosta, H. Peterlik, J. Rohonczy, S. Kubuki, P. Henits, and K. Sinkó, Structural characterization of gel-derived calcium silicate systems, J. Phys. Chem. A, 114(2010), No. 38, p. 10403.

    Article  CAS  Google Scholar 

  19. L. Zhang, R. Lan, C.T.G. Petit, and S.W. Tao, Durability study of an intermediate temperature fuel cell based on an oxide-carbonate composite electrolyte, Int. J. Hydrogen Energy, 35(2010), No. 13, p. 6934.

    Article  CAS  Google Scholar 

  20. M.A. Legodi, D. de Waal, J.H. Potgieter, and S.S. Potgieter, Rapid determination of CaCO3 in mixtures utilising FT-IR spectroscopy, Miner. Eng., 14(2001), No. 9, p. 1107.

    Article  CAS  Google Scholar 

  21. S. Vyazovkin and C.A. Wight, Isothermal and non-isothermal kinetics of thermally stimulated reactions of solids, Int. Rev. Phys. Chem., 17(1998), No. 3, p. 407.

    Article  CAS  Google Scholar 

  22. Š. Zuzjaková, P. Zeman, and Š. Kos, Non-isothermal kinetics of phase transformations in magnetron sputtered alumina films with metastable structure, Thermochim. Acta, 572(2013), p. 85.

    Article  Google Scholar 

  23. M.J. Cran, S.R. Gray, J. Scheirs, and S.W. Bigger, Non-isothermal depolymerisation kinetics of poly(ethylene oxide), Polym. Degrad Stab., 96(2011), No. 8, p. 1497.

    Article  CAS  Google Scholar 

  24. B.A. Sava, M. Elisa, C. Bartha, R. Iordanescu, I. Feraru, C. Plapcianu, and R. Patrascu, Non-isothermal free-models kinetic analysis on crystallization of europium-doped phosphate glasses, Ceram. Int., 40(2014), No. 8, p. 12387.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key R&D Program of China (No. 2018YFC1901903), the National Nature Science Foundation of China (Nos. 51674075 and 51774079), and the Fundamental Research Funds for the Central Universities, China (No. N182508026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-lin Pan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Hy., Pan, Xl., Tian, Yp. et al. Mineral transition and formation mechanism of calcium aluminate compounds in CaO-Al2O3-Na2O system during high-temperature sintering. Int J Miner Metall Mater 27, 924–932 (2020). https://doi.org/10.1007/s12613-019-1951-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-019-1951-1

Keywords

Navigation