Skip to main content
Log in

Effects of salinity and nutrients on water hyacinth and its biological control agent, Neochetina bruchi

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

A Correction to this article was published on 24 June 2020

This article has been updated

Abstract

Water hyacinth, Eichhornia crassipes (Mart.) Solms (Commelinales: Pontederiaceae), is an important aquatic weed worldwide. Previous studies demonstrate that releases of Neochetina bruchi Hustache (Coleoptera: Curculionidae) provide biological control in many locations, but not all. Notably, N. bruchi were unsuccessful at regulating water hyacinth in tidal brackish waters. Abiotic factors, including salinity and nutrients, affect water hyacinth growth, but little is known about the impact of salinity on weevil survival. We hypothesized that N. bruchi has a relatively low salinity tolerance. In a mesocosm experiment, we assessed weed growth in response to a range of salinity and nutrient concentrations. In a laboratory, we assessed adult N. bruchi mortality in response to various salinity concentrations. Results indicate that increasing nutrient concentration increases weed growth. When both nutrient and salinity levels were varied, nutrients increased leaf count, but not biomass, while salinity reduced growth and increased mortality. Increasing salinity concentrations increased adult weevil mortality; required concentrations were higher than that for weeds. Thus, these results did not provide support for the suggested hypothesis. Potential effects of salinity via other exposures to weevils need to be investigated. Elucidating abiotic factors important for weed growth and weevil survival may increase effectiveness of water hyacinth management practices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

  • 24 June 2020

    Due to an unfortunate turn of events, the maiden name of the third author was displayed in the original publication and it should have read Cindy R. Kron. The original article has been corrected and the proper representation of the authors’ names and their affiliation is also listed here.

References

  • Ajuonu, O., M. Byrne, M. Hill, P. Neuenschwander & S. Korie, 2007. Survival of the mirid Eccritotarsus catarinensis as influenced by Neochetina eichhorniae and Neochetina bruchi feeding scars on leaves of water hyacinth Eichhornia crassipes. BioControl 52: 193–205.

    Google Scholar 

  • Akers, R. P., R. W. Bergmann & M. J. Pitcairn, 2017. Biological control of water hyacinth in California’s Sacramento-San Joaquin River Delta: observations on establishment and spread. Biocontrol Science and Technology 27: 755–768.

    Google Scholar 

  • Anderson, L. W. J., 1989. Aquatic weed problems and management in North America. In Pieterse, A. H. & K. J. Murphy (eds), Aquatic Weeds: the Ecology and Management of Nuisance Vegetation. Oxford University Press, Oxford, UK: 371–405.

    Google Scholar 

  • Bartodziej, W. & A. Leslie, 1998. The Aquatic Ecology and Water Quality of the St. Marks River, Wakulla County, Florida, with Emphasis on the Role of Water-Hyacinth: 1989–1995 Studies. Florida Department of Environmental Protection, Bureau of Invasive Plant Management, Tallahassee, FL.

    Google Scholar 

  • Brendonck, L., J. Maes, W. Rommens, N. Dekeza, T. Nhiwatiwa, M. Barson, V. Callebaut, C. Phiri, K. Moreau & B. Gratwicke, 2003. The impact of water hyacinth (Eichhornia crassipes) in a eutrophic subtropical impoundment (Lake Chivero, Zimbabwe). II. Species diversity. Archiv für Hydrobiologie 158: 389–405.

    Google Scholar 

  • Byrne, M.J., M. Hill, M. Robertson, A. King, A. Jadhav, N. Katembo, J. Wilson, R. Brudvig, J. Fisher, 2010. Integrated Management of Water Hyacinth in South Africa: Development of an Integrated Management Plan for Water Hyacinth Control, Combining Biological Control, Herbicidal Control and Nutrient Control, Tailored to the Climatic Regions of South Africa. Report to the Water Research Commission. WRC Report No. TT 454/10. Water Research Commission, Pretoria, South Africa.

  • California State Water Resource Board, 2018. Bay Delta Live. https://www.baydeltalive.com/current_conditions/salinity.

  • Cantrell, R. S., C. Cosner & W. F. Fagan, 2001. How predator incursions affect critical patch size: the role of the functional response. The American Naturalist 158: 368–375.

    CAS  PubMed  Google Scholar 

  • Carignan, R., J. J. Neiff & D. Planas, 1994. Limitation of water hyacinth by nitrogen in subtropical lakes of the Paraná floodplain (Argentina). Limnology and Oceanography 39: 439–443.

    Google Scholar 

  • Center, T. D., 1994. Biological control of weeds: waterhyacinth and waterlettuce. In Rosen, D., F. D. Bennett & J. L. Capinera (eds), Pest Management in the Subtropics, Biological Control—A Florida Perspective. Intercept Ltd, UK: 481–552.

    Google Scholar 

  • Center, T. D. & F. A. Dray, 2010. Bottom-up control of water hyacinth weevil populations: do the plants regulate the insects? Journal of Applied Ecology 47: 329–337.

    Google Scholar 

  • Center, T. D., A. F. Cofrancesco & J. K. Balciunas, 1990. Biological control of aquatic and wetland weeds in the southeastern United States. In Delfosse, E. S. (ed.), Proc. VII Int. Symp. Biol. Contr. Weeds, 6-11 March 1988, Ist. Sper. Patol. Veg. (MAF), Rome, Italy: 239–262.

  • CIMIS (California Irrigation Management Information System), 2019. CIMIS station reports. https://cimis.water.ca.gov/WSNReportCriteria.aspx.

  • Coetzee, J. A. & M. P. Hill, 2012. The role of eutrophication in the biological control of water hyacinth, Eichhornia crassipes, in South Africa. BioControl 57: 247–261.

    Google Scholar 

  • Coetzee, J. A., M. J. Byrne & M. P. Hill, 2007. Impact of nutrients and herbivory by Eccritotarsus catarinensis on the biological control of water hyacinth, Eichhornia crassipes. Aquatic Botany 86: 179–186.

    CAS  Google Scholar 

  • Coetzee, J. A., M. P. Hill, M. J. Byrne & A. Bownes, 2011. A review of the biological control programmes on Eichhornia crassipes (C.Mart.) Solms (Pontederiaceae), Salvinia molesta D.S.Mitch. (Salviniaceae), Pistia stratiotes L. (Araceae), Myriophyllum aquaticum (Vell.) Verdc. (Haloragaceae) and Azolla filiculoides Lam. (Azollaceae) in South Africa. African Entomology 19: 451–468.

    Google Scholar 

  • Crawley, M., 1989. The successes and failures of weed biocontrol using insects. Biocontrol News and Information 10: 213–223.

    Google Scholar 

  • Dagno, K., R. Lahlali, M. Diourté & M. H. Jijakli, 2012. Present status of the development of mycoherbicides against water hyacinth: successes and challenges. A review. Biotechnologie, Agronomie, Société et Environnement 16: 360–368.

    Google Scholar 

  • De Casabianca, M.-L. & T. Laugier, 1995. Eichhornia crassipes production on petroliferous wastewaters: effects of salinity. Bioresource Technology 54: 39–43.

    Google Scholar 

  • Desougi, L. A., 1984. Mineral nutrient demands of the water hyacinth (Eichhornia crassipes (Mart.) Solms) in the White Nile. Hydrobiologia 110: 99–108.

    CAS  Google Scholar 

  • Fagan, W. F., R. S. Cantrell & C. Cosner, 1999. How habitat edges change species interactions. The American Naturalist 153: 165–182.

    PubMed  Google Scholar 

  • Ganga Visalakshy, P. & K. Jayanth, 1996. Effect of silt coverage of water hyacinth roots on pupation of Neochetina eichhorniae Warner and N. bruchi Hustache (Coleoptera: Curculionidae). Biocontrol Science and Technology 6: 11–14.

    Google Scholar 

  • Gichuki, J., R. Omondi, P. Boera, T. Okorut, A. S. Matano, T. Jembe & A. Ofulla, 2012. Water hyacinth Eichhornia crassipes (Mart.) Solms-Laubach dynamics and succession in the Nyanza Gulf of Lake Victoria (East Africa): implications for water quality and biodiversity conservation. The Scientific World Journal 2012: 106429.

    PubMed  PubMed Central  Google Scholar 

  • Gopal, B., 1987. Water Hyacinth. Elsevier, New York.

    Google Scholar 

  • Gutiérrez, E., E. Ruiz, E. Uribe & J. Martínez, 2000. Biomass and productivity of water hyacinth and their application in control programs. In Julien, M. H., M. P. Hill, T. D. Center & J. Ding (eds), Biological and Integrated Control of Waterhyacinth, Eichhornia crassipes. Proceedings of the Second Global Working Group Meeting for the Biological and Integrated Control of Waterhyacinth. Beijing, China, 9-12 October 2000. ACIAR Proceedings 102: 109–119.

  • Haag, K. & D. Habeck, 1991. Enhanced biological control of waterhyacinth following limited herbicide application. Journal of Aquatic Plant Management 29: 24–28.

    Google Scholar 

  • Haller, W. T., D. Sutton & W. Barlowe, 1974. Effects of salinity on growth of several aquatic macrophytes. Ecology 55: 891–894.

    Google Scholar 

  • Heard, T. A. & S. L. Winterton, 2000. Interactions between nutrient status and weevil herbivory in the biological control of water hyacinth. Journal of Applied Ecology 37: 117–127.

    Google Scholar 

  • Heidel, K., S. Roy, C. Creager, C.-F. Chung & T. Grieb, 2006. Conceptual model for nutrients in the Central Valley and Sacramento-San Joaquin Delta. Report prepared by Tetra Tech, Inc., Lafayette, CA for US Environmental Protection Agency, Region IX, Central Valley Drinking Water Policy Workgroup.

  • Hill, M. & T. Olckers, 2000. Biological control initiatives against water hyacinth in South Africa: constraining factors, success and new courses of action. In Julien, M. H., M. P. Hill, T. D. Center & J. Ding (eds), Biological and Integrated Control of Waterhyacinth, Eichhornia crassipes. Proceedings of the Second Global Working Group Meeting for the Biological and Integrated Control of Waterhyacinth. Beijing, China, 9-12 October 2000. ACIAR Proceedings 102: 33–38.

  • Hill, M. P. & C. J. Cilliers, 1999. A review of the arthropod natural enemies, and factors that influence their efficacy, in the biological control of water hyacinth, Eichhornia crassipes (Mart.) Solms-Laubach (Pontederiaceae), in South Africa. African Entomology 1: 103–112.

    Google Scholar 

  • Hollander, M., D. A. Wolfe & E. Chicken, 2013. Nonparametric Statistical Methods, Vol. 751. Wiley, New York.

    Google Scholar 

  • Holm, L. G., D. L. Plucknett, J. V. Pancho & J. P. Herberger, 1977. The World’s Worst Weeds: Distribution and Biology. University Press, Honolulu, HI.

    Google Scholar 

  • Hopper, J. V., P. D. Pratt, K. F. McCue, M. J. Pitcairn, P. J. Moran & J. D. Madsen, 2017. Spatial and temporal variation of biological control agents associated with Eichhornia crassipes in the Sacramento-San Joaquin River Delta, California. Biological Control 111: 13–22.

    Google Scholar 

  • Hopper, J. V., K. F. McCue, P. D. Pratt, P. Duchesne, E. D. Grosholz & R. A. Hufbauer, 2019. Into the weeds: matching importation history to genetic consequences and pathways in two widely used biological control agents. Evolutionary Applications 12: 773–790.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Howard, G. & K. Harley, 1997. How do floating aquatic weeds affect wetland conservation and development? How can these effects be minimised? Wetlands Ecology and Management 5: 215–225.

    Google Scholar 

  • Jiménez, M. M. & R. Charudattan, 1998. Survey and evaluation of Mexican native fungi for potential biocontrol of water hyacinth. Journal of Aquatic Plant Management 36: 145–148.

    Google Scholar 

  • Julien, M., 2000. Biological control of water hyacinth with arthropods: a review to 2000. In Julien, M. H., M. P. Hill, T. D. Center & J. Ding (eds), Biological and Integrated Control of Waterhyacinth, Eichhornia crassipes. Proceedings of the Second Global Working Group Meeting for the Biological and Integrated Control of Waterhyacinth. Beijing, China, 9-12 October 2000. ACIAR Proceedings 102: 8–20.

  • Liang, L. & B. Suits, 2017. Implementing DETAW in Modeling Hydrodynamics and Water Quality in the Sacramento-San Joaquin Delta, Methodology for Flow and Salinity Estimates in the Sacramento-San Joaquin Delta and Suisun Marsh. California Department of Water Resources, Sacramento, CA.

    Google Scholar 

  • Lugo, A., L. Bravo-Inclán, J. Alcocer, M. Gaytán, M. Oliva, M. Del, R. Sánchez, M. Chávez & G. Vilaclara, 1998. Effect on the planktonic community of the chemical program used to control water hyacinth (Eichhornia crassipes) in Guadalupe Dam, Mexico. Aquatic Ecosystem Health and Management 1: 333–343.

    CAS  Google Scholar 

  • Mailu, A., 2000. Preliminary assessment of the social, economic and environmental impacts of water hyacinth in Lake Victoria Basin and status of control. In Julien, M. H., M. P. Hill, T. D. Center & J. Ding (eds), Biological and Integrated Control of Waterhyacinth, Eichhornia crassipes. Proceedings of the Second Global Working Group Meeting for the Biological and Integrated Control of Waterhyacinth. Beijing, China, 9-12 October 2000. ACIAR Proceedings 102: 130–139.

  • Mangas-Ramírez, E. & M. Elías-Gutiérrez, 2004. Effect of mechanical removal of water hyacinth (Eichhornia crassipes) on the water quality and biological communities in a Mexican reservoir. Aquatic Ecosystem Health & Management 7: 161–168.

    Google Scholar 

  • Marlin, D., M. P. Hill, B. S. Ripley, A. J. Strauss & M. J. Byrne, 2013. The effect of herbivory by the mite Orthogalumna terebrantis on the growth and photosynthetic performance of water hyacinth (Eichhornia crassipes). Aquatic Botany 104: 60–69.

    CAS  Google Scholar 

  • Moran, P. J., 2005. Leaf scarring by the weevils Neochetina eichhorniae and N. bruchi enhances infection by the fungus Cercospora piaropi on waterhyacinth, Eichhornia crassipes. BioControl 50: 511–524.

    Google Scholar 

  • Mugidde, R., 2001. Nutrient status and planktonic nitrogen fixation in Lake Victoria, Africa. PhD thesis, University of Waterloo, Ontario, Canada.

  • Muramoto, S., I. Aoyama & Y. Oki, 1991. Effect of salinity on the concentration of some elements in water hyacinth (Eichhornia crassipes) at critical levels. Journal of Environmental Science & Health Part A 26: 205–215.

    Google Scholar 

  • Musil, C. & C. Breen, 1977. The application of growth kinetics to the control of Eichhornia crassipes (Mart) Solms. through nutrient removal by mechanical harvesting. Hydrobiologia 53: 165–171.

    CAS  Google Scholar 

  • Musil, C. & C. Breen, 1984. The development from kinetic coefficients of a predictive model for the growth of Eichhornia crassipes in the field. IV. Application of the model to the Vernon Hooper Dam—a eutrophied South African impoundment. Bothalia 15: 733–748.

    Google Scholar 

  • Nwankwo, D. & A. Akinsoji, 1988. Tolerance to salinity and survivorship of Eichhornia crassipes (Mart.) Solms. growing in a creek around Lagos. In Oke, O. L., A. M. A. Imevbore & T. A. Farri (eds), International Workshop on Water Hyacinth—Menace and Resource, 1988, Nigeria. Nigerian Federal Ministry of Science and Technology, Lagos: 85–87.

    Google Scholar 

  • Olivares, E. & G. Colonnello, 2000. Salinity gradient in the Mánamo River, a dammed distributary of the Orinoco Delta, and its influence on the presence of Eichhornia crassipes and Paspalum repens. Interciencia 25: 242–248.

    Google Scholar 

  • Pandey, D. K., L. P. Kauraw & V. M. Bhan, 1993. Inhibitory effect of parthenium (Parthenium hysterophorus L.) residue on growth of water hyacinth (Eichhornia crassipes Mart Solms.) I. Effect of leaf residue. Journal of Chemical Ecology 19: 2651–2662.

    CAS  PubMed  Google Scholar 

  • Pieterse, A. H., 1977. Biological control of aquatic weeds: perspectives for the tropics. Aquatic Botany 3: 133–141.

    Google Scholar 

  • Pimentel, D., R. Zuniga & D. Morrison, 2005. Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecological Economics 52: 273–288.

    Google Scholar 

  • R Core Team, 2018. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Austria.

    Google Scholar 

  • Reddy, K., M. Agami & J. Tucker, 1989. Influence of nitrogen supply rates on growth and nutrient storage by water hyacinth (Eichhornia crassipes) plants. Aquatic Botany 36: 33–43.

    CAS  Google Scholar 

  • Reddy, K., M. Agami & J. Tucker, 1990. Influence of phosphorus on growth and nutrient storage by water hyacinth (Eichhornia crassipes (Mart.) Solms) plants. Aquatic Botany 37: 355–365.

    CAS  Google Scholar 

  • Reddy, K., M. Agami, E. d’Angelo & J. Tucker, 1991. Influence of potassium supply on growth and nutrient storage by water hyacinth. Bioresource Technology 37: 79–84.

    CAS  Google Scholar 

  • Reddy, A. M., P. D. Pratt, J. V. Hopper, X. Cibils-Stewart, G. C. Walsh & F. Mc Kay, 2019. Variation in cool temperature performance between populations of Neochetina eichhorniae (Coleoptera: Curculionidae) and implications for the biological control of water hyacinth, Eichhornia crassipes, in a temperate climate. Biological Control 128: 85–93.

    Google Scholar 

  • Ritz, C., F. Baty, J. C. Streibig & D. Gerhard, 2015. Dose-response analysis using R. PLoS ONE 10: e0146021.

    PubMed  PubMed Central  Google Scholar 

  • Rocha-Ramírez, A., A. Ramírez-Rojas, R. Chávez-López & J. Alcocer, 2007. Invertebrate assemblages associated with root masses of Eichhornia crassipes (Mart.) Solms-Laubach 1883 in the Alvarado lagoonal system, Veracruz, Mexico. Aquatic Ecology 41: 319–333.

    Google Scholar 

  • Roos, J. C. & A. Pieterse, 1995. Salinity and dissolved substances in the Vaal River at Balkfontein, South Africa. Hydrobiologia 306: 41–51.

    CAS  Google Scholar 

  • Seagrave, C., 1988. Aquatic Weed Control. Fishing News Books, Farnham, Surrey.

    Google Scholar 

  • Shabana, Y. M., R. Charudattan & M. A. Elwakil, 1995. Evaluation of Alternaria eichhorniae as a bioherbicide for waterhyacinth (Eichhornia crassipes) in greenhouse trials. Biological Control 5: 136–144.

    Google Scholar 

  • Sooknah, R. D. & A. C. Wilkie, 2004. Nutrient removal by floating aquatic macrophytes cultured in anaerobically digested flushed dairy manure wastewater. Ecological Engineering 22: 27–42.

    Google Scholar 

  • Sosa, A., H. Cordo & J. Sacco, 2007. Preliminary evaluation of Megamelus scutellaris Berg (Hemiptera: Delphacidae), a candidate for biological control of waterhyacinth. Biological Control 42: 129–138.

    Google Scholar 

  • Spencer, D. F. & G. G. Ksander, 2004. Do tissue carbon and nitrogen limit population growth of weevils introduced to control waterhyacinth at a site in the Sacramento-San Joaquin Delta, California? Journal of Aquatic Plant Management 42: 45–48.

    Google Scholar 

  • Spencer, D. F. & G. Ksander, 2005. Seasonal growth of waterhyacinth in the Sacramento/San Joaquin Delta, California. Journal of Aquatic Plant Management 43: 91–94.

    Google Scholar 

  • Stewart, R. M., A. F. Cofrancesco & L. G. Bezark, 1988. Biological Control of Waterhyacinth in the California Delta. Technical Report A-88-7. US Army Engineer Waterways Experiment Station, Vicksburg, MS.

    Google Scholar 

  • Toft, J. D., C. A. Simenstad, J. R. Cordell & L. F. Grimaldo, 2003. The effects of introduced water hyacinth on habitat structure, invertebrate assemblages, and fish diets. Estuaries 26: 746–758.

    Google Scholar 

  • Troutman, J. P., D. A. Rutherford & W. Kelso, 2007. Patterns of habitat use among vegetation-dwelling littoral fishes in the Atchafalaya River Basin, Louisiana. Transactions of the American Fisheries Society 136: 1063–1075.

    Google Scholar 

  • Van Thielen, R., O. Ajuonu, V. Schade, P. Neuenschwander, A. Adité & C. Lomer, 1994. Importation, releases, and establishment of Neochetina spp. (Col.: Curculionidae) for the biological control of water hyacinth, Eichhornia crassipes (Lil.: Pontederiaceae), in Benin, West Africa. Entomophaga 39: 179–188.

    Google Scholar 

  • Van Wyk, E. & B. Van Wilgen, 2002. The cost of water hyacinth control in South Africa: a case study of three options. African Journal of Aquatic Science 27: 141–149.

    Google Scholar 

  • Villamagna, A. & B. Murphy, 2010. Ecological and socio-economic impacts of invasive water hyacinth (Eichhornia crassipes): a review. Freshwater Biology 55: 282–298.

    Google Scholar 

  • Wainger, L. A., N. E. Harms, C. Magen, D. Liang, G. M. Nesslage, A. M. McMurray & A. F. Cofrancesco, 2018. Evidence-based economic analysis demonstrates that ecosystem service benefits of water hyacinth management greatly exceed research and control costs. PeerJ 6: e4824.

    PubMed  PubMed Central  Google Scholar 

  • Ward, J., 1989. The four-dimensional nature of lotic ecosystems. Journal of the North American Benthological Society 8: 2–8.

    Google Scholar 

  • Weyl, P. S. R. & M. P. Hill, 2012. The effects of insect–insect interactions on the performance of three biological control agents released against water hyacinth. Biocontrol Science and Technology 22: 883–897.

    Google Scholar 

  • Williams, A. E., R. E. Hecky & H. C. Duthie, 2007. Water hyacinth decline across Lake Victoria—was it caused by climatic perturbation or biological control? A reply. Aquatic Botany 87: 94–96.

    Google Scholar 

  • Wilson, J. R., Rees, M., Holst, N., Thomas, M. B., and Hill, G. 2000. Water hyacinth population dynamics, pp. 96-104. In Proceedings, Second Meeting of the Global Working Group for the Biological and Integrated Control of Water Hyacinth, 9–12 October 2000, Beijing, China. ACIAR, Canberra, Australia.

  • Wilson, J. R., N. Holst & M. Rees, 2005. Determinants and patterns of population growth in water hyacinth. Aquatic Botany 81: 51–67.

    Google Scholar 

  • Wilson, J. R., O. Ajuonu, T. D. Center, M. P. Hill, M. H. Julien, F. F. Katagira, P. Neuenschwander, S. W. Njoka, J. Ogwang & R. H. Reeder, 2007. The decline of water hyacinth on Lake Victoria was due to biological control by Neochetina spp. Aquatic Botany 87: 90–93.

    Google Scholar 

  • Winston, R. L., M. Schwarzländer, H. L. Hinz, M. D. Day, M. J. Cock & M. H. Julien, 2014. Biological Control of Weeds: a World Catalogue of Agents and Their Target Weeds, 5th ed. USDA Forest Service, Forest Health Technology Enterprise Team, Morgantown, WV.

    Google Scholar 

  • Zhenbin, W., Q. Changqiang, X. Yicheng & W. Deming, 1990. Effects of salinity in petrochemical wastewater on the growth and purification efficiency of water hyacinth. Acta Hydrobiologica Sinica 14: 239–246.

    Google Scholar 

Download references

Acknowledgements

We thank Dr. Daniel Klittich and Robert Starnes from the University of California Davis for assembling the mesocosm and evaporative cooler for the water hyacinth experiments. We thank Machiko Murdock for field and laboratory assistance. Additionally, we thank Dr. Christian Nansen for experimental design assistance, Dr. Paul Pratt for discussion and direction, and Dr. Jay Rosenheim for editing assistance. This work was supported by the United States Department of Agriculture’s Delta Region Areawide Aquatic Weed Project [https://ucanr.edu/sites/DRAAWP/].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emily Bick.

Additional information

Handling editor: André Padial

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article was revised: the surname of the third author appeared incorrectly as it should have read Cindy R. Kron.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bick, E., de Lange, E.S., Kron, C.R. et al. Effects of salinity and nutrients on water hyacinth and its biological control agent, Neochetina bruchi. Hydrobiologia 847, 3213–3224 (2020). https://doi.org/10.1007/s10750-020-04314-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-020-04314-x

Keywords

Navigation