Skip to main content
Log in

Identification, association, and expression analysis of ZmNAC134 gene response to phosphorus deficiency tolerance traits in maize at seedling stage

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Phosphorus deficiency is one of the major factors limiting plant growth and grain yield. Improving plant tolerance to Pi deficiency through genetic mechanism is an important source to increase grain yield. In this study, bioinformatics analysis, expression, and natural variation in ZmNAC134 gene with low Pi tolerant traits were analyzed under low Pi conditions. A total of 177 diverse heterotic groups of maize inbreds were used to identify the nucleotide diversity and alleles of ZmNAC134, which plays a vital role in the regulation of root architecture in response to Pi deficiency evolutionary results showed that ZmNAC134 has 3 homologous genes and these genes have one exon and conserved domain. The phenotypic traits showed significant difference for each of the 22 traits under deficient and sufficient Pi conditions. A total of 27 SNPs were identified in the coding region of ZmNAC134 and no InDels among 177 inbred lines. Among 27 SNPs, a total of 8 sites were highly significantly associated with multiple traits of low Pi tolerant trait index at − log10 P = 3.43. Although, 7 sites under Pi normal and 9 sites under Pi deficient conditions, of which four synonymous sites (position S24, S82, S164, and S1037) were associated with diverse number of traits in low Pi and normal Pi conditions and LD was not tight among these sites. Furthermore, the expression pattern was compared between Pi tolerant 178 and Pi sensitive 9782 inbred lines. ZmNAC134 was highly up-regulated in the roots and leaves of Pi tolerant 178 inbred line at 3 days, 7 days, and 9 days in roots and 7 days and 12 days in leaves while down-regulated in roots and leaves of Pi sensitive 9782 inbred line. In addition, protein encoded by ZmNAC134 was located in both nucleus and cytoplasm. Our findings provide the new insight of ZmNAC134 gene involved in low Pi stress and responsible against low Pi condition and the significant association of polymorphic loci with traits could be helpful to find out the molecular marker for genetic resources for further molecular maize breeding program.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bradbury P, Zhang Z, Kroon D, Casstevens TY, Buckler E (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23(19):2633–2635

    Article  CAS  PubMed  Google Scholar 

  • Brownawell AM, Kops GJ, Macara IG, Burgering BM (2001) Inhibition of nuclear import by protein kinase B (Akt) regulates the subcellular distribution and activity of the fork head transcription factor AFX. Mol Cell Biol 21:3534–3546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai H, Xie W, Zhu T, Lian X (2012) Transcriptome response to phosphorus starvation in rice. Acta Physiol Plant 34(1):327–341

    Article  CAS  Google Scholar 

  • Calderonvazquez C, Ibarralaclette E, Caballeroperez J, Herreraestrella L (2008) Transcript profiling of Zea mays roots reveals gene responses to phosphate deficiency at the plant- and species-specific levels. J Exp Bot 59(9):2479–2497

    Article  CAS  Google Scholar 

  • Ching A, Caldwell KS, Jung M, Dolan M, Smith OS, Tingey S, Morgante M, Rafalski AJ (2002) SNP frequency, haplotype structure and linkage disequilibrium in elite maize inbred lines. BMC Genet 3(1):19

    Article  PubMed  PubMed Central  Google Scholar 

  • Chin-Sheng Y, Chih-Wen C, Wen-Chi S, Kuei-Chung C, Shao-Wei H, Jenn-Kang H, Chih-Hao L (2014) CELLO2GO: a web server for protein subCELlular LOcalization prediction with functional gene ontology annotation. PLoS ONE 9(6):e99368

    Article  CAS  Google Scholar 

  • Clark RM, Eric L, Joachim M, Doebley JF (2004) Pattern of diversity in the genomic region near the maize domestication gene tb1. Proc Natl Acad Sci USA 101(3):700–707

    Article  CAS  PubMed  Google Scholar 

  • Dan Z, Haina S, Hao C, Derong H, Hui W, Guizhen K, Hangxia J, Deyue Y (2014) The acid phosphatase-encoding gene GmACP1 contributes to soybean tolerance to low-phosphorus stress. PLoS Genet 10(1):e1004061

    Article  CAS  Google Scholar 

  • Fang Y, Liao K, Du H, Xu Y, Song H, Li X, Xiong L (2015) A stress-responsive NAC transcription factor SNAC3 confers heat and drought tolerance through modulation of reactive oxygen species in rice. J Exp Bot 66(21):6803–6817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Font i Forcada C, Guajardo V, Reyes Chin Wo S, Moreno Sánchez MÁ (2018) Association mapping analysis for fruit quality traits in Prunus persica using SNP markers. Front Plant Sci 9:2005

    Article  PubMed  Google Scholar 

  • Gore MA, Chia JM, Elshire RJ, Sun Q, Ersoz ES, Hurwitz BL, Peiffer JA, Mcmullen MD, Grills GS, Rossibarra J (2009) A first-generation haplotype map of maize. Science 326(5956):1115–1117

    Article  CAS  PubMed  Google Scholar 

  • Guo A, Zhu Q, Chen X, Luo J (2007) GSDS: a gene structure display server. Yi Chuan Hereditas 29(8):1023–1026

    Article  CAS  PubMed  Google Scholar 

  • Hyeon-Son C, Wen-Min S, Gil-Soo H, Devin P, Zhi X, Carman GM (2012) Pho85p–Pho80p phosphorylation of yeast Pah1p phosphatidate phosphatase regulates its activity, location, abundance, and function in lipid metabolism. J Biol Chem 287(14):11290–11301

    Article  CAS  Google Scholar 

  • Jensen MK, Kjaersgaard T, Nielsen MM, Galberg P, Petersen K, O’Shea C, Skriver K (2010) The Arabidopsis thaliana NAC transcription factor family: structure-function relationships and determinants of ANAC019 stress signalling. Biochem J 426(7):183–196

    Article  CAS  PubMed  Google Scholar 

  • Kai F, Ming W, Ying M, Mi N, Noreen B, Shuna Y, Feng L, Xuede W (2014) Molecular evolution and expansion analysis of the NAC transcription factor in Zea mays. PLoS ONE 9(11):e111837

    Article  CAS  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7):1870–1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumiko O, Akifumi S, Yutaka O, Toru F, Toru M (2011) Suppression of a NAC-like transcription factor gene improves boron-toxicity tolerance in rice. Plant Physiol 156(3):1457–1463

    Article  CAS  Google Scholar 

  • Li Z, Gao Q, Liu Y, He C, Zhang X, Zhang J (2011) Overexpression of transcription factor ZmPTF1 improves low phosphate tolerance of maize by regulating carbon metabolism and root growth. Planta 233:1129–1143

    Article  CAS  PubMed  Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    Article  CAS  PubMed  Google Scholar 

  • Lin H-J, Gao J, Zhang Z-M, Shen Y-O, Lan H, Liu L, Xiang K, Zhao M, Zhou S, Zhang Y-Z (2013) Transcriptional responses of maize seedling root to phosphorus starvation. Mol Biol Rep 40(9):5359–5379

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative pcr and the 2(−delta delta c(t)) method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  • Lopezarredondo DL, Leyvagonzalez MA, Gonzalezmorales SI, Lopezbucio J, Herreraestrella LR (2014) Phosphate nutrition: improving low-phosphate tolerance in crops. Annu Rev Plant Biol 65(1):95–123

    Article  CAS  Google Scholar 

  • Lu Y, Zhang S, Shah T, Xie C, Hao Z, Li X, Farkhari M, Ribaut JM, Cao M, Rong T (2010) Joint linkage–linkage disequilibrium mapping is a powerful approach to detecting quantitative trait loci underlying drought tolerance in maize. Proc Natl Acad Sci 107(45):19585–19590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo B, Ma P, Nie Z, Zhang X, He X, Ding X, Feng X, Lu Q, Ren Z, Lin H (2019) Metabolite profiling and genome-wide association studies reveal response mechanisms of phosphorus deficiency in maize seedling. Plant J 97:947–969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mao H, Wang H, Liu S, Li Z, Yang X, Yan J, Li J, Tran LP, Qin F (2015) A transposable element in a NAC gene is associated with drought tolerance in maize seedlings. Nat Commun 6(1):8326

    Article  CAS  PubMed  Google Scholar 

  • Nilsson L, Muller R, Nielsen TH (2010) Dissecting the plant transcriptome and the regulatory responses to phosphate deprivation. Physiol Plant 139(2):129–143

    Article  CAS  PubMed  Google Scholar 

  • Nuruzzaman M, Manimekalai R, Sharoni AM, Satoh K, Kondoh H, Ooka H, Kikuchi S (2010) Genome-wide analysis of NAC transcription factor family in rice. Gene 465(1):30–44

    Article  CAS  PubMed  Google Scholar 

  • Nuruzzaman M, Sharoni AM, Kikuchi S (2013) Roles of NAC transcription factors in the regulation of biotic and abiotic stress responses in plants. Front Microbiol 4(4):248

    PubMed  PubMed Central  Google Scholar 

  • Olsen AN, Ernst HA, Leggio LL, Skriver K (2005) NAC transcription factors: structurally distinct, functionally diverse. Trends Plant Sci 10(2):79–87

    Article  CAS  PubMed  Google Scholar 

  • Ooka H, Satoh K, Doi K, Nagata T, Otomo Y, Murakami K, Matsubara K, Osato N, Kawai J, Carninci P (2003) Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana. DNA Res 10(6):239–247

    Article  CAS  PubMed  Google Scholar 

  • Parnell E, Smith BO, Yarwood SJ (2015) The cAMP sensors, EPAC1 and EPAC2, display distinct subcellular distributions despite sharing a common nuclear pore localisation signal. Cell Signal 27(5):989–996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng X, Zhao Y, Li X, Wu M, Chai W, Sheng L, Wang Y, Dong Q, Jiang H, Cheng B (2015) Genomewide identification, classification and analysis of NAC type gene family in maize. J Genet 94(3):377–390

    Article  CAS  PubMed  Google Scholar 

  • Peret B, Clement M, Nussaume L, Desnos T (2011) Root developmental adaptation to phosphate starvation: better safe than sorry. Trends Plant Sci 16(8):442–450

    Article  CAS  PubMed  Google Scholar 

  • Ping W, Huixia S, Guohua X, Xinming L (2013) Improvement of phosphorus efficiency in rice on the basis of understanding phosphate signaling and homeostasis. Curr Opin Plant Biol 16(2):205–212

    Article  CAS  Google Scholar 

  • Porebski S, Bailey LG, Baum BR (1997) Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Mol Biol Rep 15(1):8–15

    Article  CAS  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155(2):945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Puranik S, Sahu PP, Srivastava PS, Prasad M (2012) NAC proteins: regulation and role in stress tolerance. Trends Plant Sci 17(6):369–381

    Article  CAS  PubMed  Google Scholar 

  • Puranik S, Sahu PP, Mandal SN, Suresh BV, Parida SK, Prasad M (2013) Comprehensive genome-wide survey, genomic constitution and expression profiling of the NAC transcription factor family in foxtail millet (Setaria italica L.). Plos ONE 8(5):e64594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Remington DL, Thornsberry JM, Matsuoka Y, Wilson LM, Whitt SR, Doebley J, Kresovich S, Goodman MM, Buckler ES (2001) Structure of linkage disequilibrium and phenotypic associations in the maize genome. Proc Natl Acad Sci USA 98(20):11479–11484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen J, Yuan L, Zhang J, Li H, Bai Z, Chen X, Zhang W, Zhang F (2011) Phosphorus dynamics: from soil to plant. Plant Physiol 156(3):997–1005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shengxue L, Xianglan W, Hongwei W, Haibo X, Xiaohong Y, Jianbing Y, Jiansheng L, Lam-Son Phan T, Kazuo S, Kazuko YS (2013) Genome-wide analysis of ZmDREB genes and their association with natural variation in drought tolerance at seedling stage of Zea mays L. PLoS Genet 9(9):e1003790

    Article  CAS  Google Scholar 

  • Shun-zhong L, Yan-li H, Zhang S, Shen Y, Zhang H (2014) Genome-wide expression profile of maize root response to phosphorus deficiency revealed by deep sequencing. J Integr Agric 13(6):1216–1229

    Article  CAS  Google Scholar 

  • Strable J, Scanlon MJ (2009) Maize (Zea mays): a model organism for basic and applied research in plant biology. Cold Spring Harb Protoc 2009(10):pdb.emo132

    Article  PubMed  CAS  Google Scholar 

  • Su Z, Li X, Hao Z, Xie C, Li M, Weng J, Zhang D, Liang X, Wang Z, Gao J (2011) Association analysis of the nced and rab28 genes with phenotypic traits under water stress in maize. Plant Mol Biol Rep 29(3):714–722

    Article  Google Scholar 

  • Sun Y, Mu C, Chen Y, Kong X, Xu Y, Zheng H, Zhang H, Wang Q, Xue Y, Li Z (2016) Comparative transcript profiling of maize inbreds in response to long-term phosphorus deficiency stress. Plant Physiol Biochem 109:467–481

    Article  CAS  PubMed  Google Scholar 

  • Tenaillon MI, Sawkins MC, Long AD, Gaut RL, Doebley JF, Gaut BS (2001) Patterns of DNA sequence polymorphism along chromosome 1 of maize (Zea mays ssp. mays L.). Proc Natl Acad Sci USA 98(16):9161–9166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson JD, Gibson TJ, Higgins DG (2002) Multiple sequence alignment using ClustalW and ClustalX. Curr Protoc Bioinform Chapter 2 (Unit 2):Unit 2.3

  • Thornton B, Basu C (2015) Rapid and simple method of qPCR primer design. Methods Mol Biol 1275:173–179

    Article  CAS  PubMed  Google Scholar 

  • Tian F, Stevens NM, Buckler ES (2009) Tracking footprints of maize domestication and evidence for a massive selective sweep on chromosome 10. Proc Natl Acad Sci USA 106(24):9979–9986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Wang H, Liu S, Ferjani A, Li J, Yan J, Yang X, Qin F (2016) Genetic variation in ZmVPP1 contributes to drought tolerance in maize seedlings. Nat Genet 48(10):1233

    Article  CAS  PubMed  Google Scholar 

  • Weng J, Li B, Liu C, Yang X, Wang H, Hao Z, Li M, Zhang D, Ci X, Li X (2013) A non-synonymous SNP within the isopentenyl transferase 2 locus is associated with kernel weight in Chinese maize inbreds (Zea mays L.). BMC Plant Biol 13(1):98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson LM, Whitt SR, Ibáñez AM, Rocheford TR, Goodman MM, Buckler ES (2004) Dissection of maize kernel composition and starch production by candidate gene association. Plant Cell 16(10):2719–2733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu X, Yang H, Qu C, Xu Z, Li W, Hao B, Yang C, Sun G, Liu G (2015) Sequence and expression analysis of the AMT gene family in poplar. Front Plant Sci 6:337

    PubMed  PubMed Central  Google Scholar 

  • Wu F, Liu Z, Xu J, Gao S, Lin H, Liu L, Liu Y, Lu Y (2016) Molecular evolution and association of natural variation in ZmARF31 with low phosphorus tolerance in maize. Front Plant Sci 7:1076

    PubMed  PubMed Central  Google Scholar 

  • Xiang Y, Sun X, Gao S, Qin F, Dai M (2017) Deletion of an endoplasmic reticulum stress response element in a ZmPP2C-A gene facilitates drought tolerance of maize seedlings. Mol Plant 10(3):456–469

    Article  CAS  PubMed  Google Scholar 

  • Yan J, Warburton ML, Crouch JH (2011) Association mapping for enhancing maize (Zea mays L.) genetic improvement. Crop Sci 51(2):433–449

    Article  Google Scholar 

  • Yang Q, Li Z, Li W, Ku L, Wang C, Ye J, Li K, Yang N, Li Y, Zhong T (2013) CACTA-like transposable element in ZmCCT attenuated photoperiod sensitivity and accelerated the postdomestication spread of maize. Proc Natl Acad Sci 110(42):16969–16974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang N, Lu Y, Yang X, Huang J, Zhou Y, Ali F, Wen W, Liu J, Li J, Yan J (2014a) Genome wide association studies using a new nonparametric model reveal the genetic architecture of 17 agronomic traits in an enlarged maize association panel. PLOS Genet 10(9):e1004573

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yang Z, Zhang E, Jiang Y, Xu S, Liang P, Chen Q, Xu C (2014b) Sequence polymorphisms in Zmisa2 gene are significantly associated with starch pasting and gelatinization properties in maize (Zea mays L.). Mol Breed 34(4):1833–1842

    Article  CAS  Google Scholar 

  • Yu J, Buckler ES (2006) Genetic association mapping and genome organization of maize. Curr Opin Biotechnol 17(2):155–160

    Article  CAS  PubMed  Google Scholar 

  • Yu X, Bai G, Liu S, Luo N, Wang Y, Richmond DS, Pijut PM, Jackson SA, Yu J, Jiang Y (2013) Association of candidate genes with drought tolerance traits in diverse perennial ryegrass accessions. J Exp Bot 64(6):1537–1551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Zhang H, Li L, Lan H, Ren Z, Liu D, Wu L, Liu H, Jaqueth J, Li B (2016) Characterizing the population structure and genetic diversity of maize breeding germplasm in Southwest China using genome-wide SNP markers. BMC Genom 17(1):697

    Article  Google Scholar 

  • Zhang Y, Wan J, He L, Lan H, Li L (2019) Genome-wide association analysis of plant height using the maize F1 population. Plants 8(10):432

    Article  CAS  PubMed Central  Google Scholar 

  • Zhu T, Budworth P, Han B, Brown D, Chang HS, Zou G, Wang X (2001) Toward elucidating the global gene expression patterns of developing Arabidopsis: parallel analysis of 8300 genes by a high-density oligonucleotide probe array. Plant Physiol Biochem 39(3):221–242

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by a grants from the Sichuan Science and Technology Support Project (2016NZ0103, 2016NYZ0043, and 2018HH0013.), Sichuan Financial Innovation Capacity Improvement Project Special Fund (2016NYPZ-104), China Agricultural Research System (CARS-02), and National Natural Foundation of China (31971955).

Author information

Authors and Affiliations

Authors

Contributions

JHS and SG designed the experiment, writing original draft and approved for final draft; JHS, LB, and XH conducted the experiments; JHS, FZ, HT, XZ, DL, LW, XD, and PM analyzed the data, prepared the tables and figures and approved the final draft; Shibin Gao supervision and approved final draft.

Corresponding author

Correspondence to Shibin Gao.

Ethics declarations

Conflict of interest

The authors declare that they do not have a conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (RAR 76 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahito, J.H., Zheng, F., Tang, H. et al. Identification, association, and expression analysis of ZmNAC134 gene response to phosphorus deficiency tolerance traits in maize at seedling stage. Euphytica 216, 100 (2020). https://doi.org/10.1007/s10681-020-02634-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10681-020-02634-6

Keywords

Navigation