Skip to main content
Log in

Lower and upper bounds for strong approximation errors for numerical approximations of stochastic heat equations

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

This article establishes optimal upper and lower error estimates for strong full-discrete numerical approximations of the stochastic heat equation driven by space-time white noise. Thereby, this work proves the optimality of the strong convergence rates for certain full-discrete approximations of stochastic Allen–Cahn equations with space-time white noise which have been obtained in a recent previous work of the authors of this article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions, Encyclopedia of Mathematics and its Applications, vol. 44. Cambridge University Press, Cambridge (1992)

    Book  Google Scholar 

  2. Becker, S., Gess, B., Jentzen, A., Kloeden, P.E.: Strong convergence rates for explicit space-time discrete numerical approximations of stochastic Allen–Cahn equations. arXiv:1711.02423v1 p. 104 pages (2017)

  3. Hutzenthaler, M., Jentzen, A., Kloeden, P.E.: Strong convergence of an explicit numerical method for SDEs with non-globally Lipschitz continuous coefficients. Ann. Appl. Probab. 22(4), 1611–1641 (2012)

    Article  MathSciNet  Google Scholar 

  4. Wang, X., Gan, S.: The tamed Milstein method for commutative stochastic differential equations with non-globally Lipschitz continuous coefficients. J. Differ. Equ. Appl. 19(3), 466–490 (2013)

    Article  MathSciNet  Google Scholar 

  5. Hutzenthaler, M., Jentzen, A., Kloeden, P.E.: Divergence of the multilevel Monte Carlo Euler method for nonlinear stochastic differential equations. Ann. Appl. Probab. 23(5), 1913–1966 (2013)

    Article  MathSciNet  Google Scholar 

  6. Hutzenthaler, M., Jentzen, A.: Numerical approximations of stochastic differential equations with non-globally Lipschitz continuous coefficients. Mem. Am. Math. Soc. 236(1112), v+99 (2015)

    MathSciNet  MATH  Google Scholar 

  7. Tretyakov, M.V., Zhang, Z.: A fundamental mean-square convergence theorem for SDEs with locally Lipschitz coefficients and its applications. SIAM J. Numer. Anal. 51(6), 3135–3162 (2013)

    Article  MathSciNet  Google Scholar 

  8. Sabanis, S.: A note on tamed Euler approximations. Electron. Commun. Probab. 18(47), 1–10 (2013)

    MathSciNet  MATH  Google Scholar 

  9. Sabanis, S.: Euler approximations with varying coefficients: the case of superlinearly growing diffusion coefficients. Ann. Appl. Probab. 26(4), 2083–2105 (2016)

    Article  MathSciNet  Google Scholar 

  10. Gyöngy, I., Sabanis, S., Šiška, D.: Convergence of tamed Euler schemes for a class of stochastic evolution equations. Stoch. Partial Differ. Equ. Anal. Comput. 4(2), 225–245 (2016)

    MathSciNet  MATH  Google Scholar 

  11. Jentzen, A., Pušnik, P.: Strong convergence rates for an explicit numerical approximation method for stochastic evolution equations with non-globally Lipschitz continuous nonlinearities. IMA J. Numer. Anal. (2019). https://doi.org/10.1093/imanum/drz009

    Article  MATH  Google Scholar 

  12. Jentzen, A., Pušnik, P.: Exponential moments for numerical approximations of stochastic partial differential equations. Stoch. PDE Anal. Comput. 6, 565–617 (2018)

    Article  MathSciNet  Google Scholar 

  13. Hutzenthaler, M., Jentzen, A., Salimova, D.: Strong convergence of full-discrete nonlinearity-truncated accelerated exponential Euler-type approximations for stochastic Kuramoto–Sivashinsky equations. Commun. Math. Sci. 16(6), 1489–1529 (2018)

    Article  MathSciNet  Google Scholar 

  14. Becker, S., Jentzen, A.: Strong convergence rates for nonlinearity-truncated Euler-type approximations of stochastic Ginzburg–Landau equations. Stoch. Proc. Appl. 129(1), 28–69 (2019)

    Article  MathSciNet  Google Scholar 

  15. Sabanis, S., Zhang, Y.: On explicit order 1.5 approximations with varying coefficients: the case of super-linear diffusion coefficients. J. Complex 50, 84–115 (2019)

    Article  MathSciNet  Google Scholar 

  16. Jentzen, A., Salimova, D., Welti, T.: Strong convergence for explicit space-time discrete numerical approximation methods for stochastic Burgers equations. J. Math. Anal. Appl. 469(2), 661–704 (2019)

    Article  MathSciNet  Google Scholar 

  17. Bréhier, C.E., Goudenège, L.: Analysis of some splitting schemes for the stochastic Allen–Cahn equation. Discrete Contin. Dyn. Syst. Ser. B 24(8), 4169–4190 (2019)

    MathSciNet  MATH  Google Scholar 

  18. Bréhier, C.E., Cui, J., Hong, J.: Strong convergence rates of semi-discrete splitting approximations for stochastic Allen–Cahn equation. IMA J. Numer. Anal. 39(4), 2096–2134 (2018)

    Article  Google Scholar 

  19. Wang, X.: An efficient explicit full discrete scheme for strong approximation of stochastic Allen–Cahn equation. arXiv:1802.09413 p. 25 pages (2018)

  20. Qi, R., Wang, X.: Optimal error estimates of Galerkin finite element methods for stochastic Allen–Cahn equation with additive noise. arXiv:1804.11331 p. 24 pages (2018)

  21. Müller-Gronbach, T., Ritter, K., Wagner, T.: Optimal pointwise approximation of a linear stochastic heat equation with additive space-time white noise. In: Monte Carlo and Quasi-Monte Carlo Methods 2006, pp. 577–589. Springer, Berlin (2008)

  22. Müller-Gronbach, T., Ritter, K.: Lower bounds and nonuniform time discretization for approximation of stochastic heat equations. Found. Comput. Math. 7(2), 135–181 (2007)

    Article  MathSciNet  Google Scholar 

  23. Müller-Gronbach, T., Ritter, K., Wagner, T.: Optimal pointwise approximation of infinite-dimensional Ornstein–Uhlenbeck processes. Stoch. Dyn. 8(3), 519–541 (2008)

    Article  MathSciNet  Google Scholar 

  24. Conus, D., Jentzen, A., Kurniawan, R.: Weak convergence rates of spectral Galerkin approximations for SPDEs with nonlinear diffusion coefficients. Ann. Appl. Probab. 29(2), 653–716 (2019)

    Article  MathSciNet  Google Scholar 

  25. Jentzen, A., Kurniawan, R.: Weak convergence rates for Euler-type approximations of semilinear stochastic evolution equations with nonlinear diffusion coefficients. arXiv:1501.03539 p. 51 pages. To appear in Found. Comput. Math.. (2015)

Download references

Acknowledgements

This work has been partially supported through the SNSF-Research project 200021_156603 “Numerical approximations of nonlinear stochastic ordinary and partial differential equations”. The third author acknowledges funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy EXC 2044-390685587, Mathematics Muenster: Dynamics-Geometry-Structure. Financial support by the DFG through the CRC 1283 “Taming uncertainty and profiting from randomness and low regularity in analysis, stochastics and their applications” is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Becker.

Additional information

Communicated by David Cohen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Becker, S., Gess, B., Jentzen, A. et al. Lower and upper bounds for strong approximation errors for numerical approximations of stochastic heat equations. Bit Numer Math 60, 1057–1073 (2020). https://doi.org/10.1007/s10543-020-00807-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-020-00807-2

Keywords

Mathematics Subject Classification

Navigation