Skip to main content
Log in

Local projection stabilization with discontinuous Galerkin method in time applied to convection dominated problems in time-dependent domains

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

This paper presents the numerical analysis of a stabilized finite element scheme with discontinuous Galerkin (dG) discretization in time for the solution of a transient convection–diffusion–reaction equation in time-dependent domains. In particular, the local projection stabilization and the higher order dG time stepping scheme are used for convection dominated problems. Further, an arbitrary Lagrangian–Eulerian formulation is used to handle the time-dependent domain. The stability and error estimates are given for the proposed numerical scheme. The validation of the proposed local projection stabilization scheme with higher order dG time discretization is demonstrated with appropriate numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ahmed, N., Matthies, G., Tobiska, L., Xie, H.: Discontinuous Galerkin time stepping with local projection stabilization for transient convection–diffusion–reaction problems. Comput. Methods Appl. Mech. Eng. 200, 1747–1756 (2011)

    MathSciNet  MATH  Google Scholar 

  2. Badia, S., Codina, R.: Analysis of a stabilized finite element approximation of the of the transient convection–diffusion equation using an ALE framework. SIAM J. Numer. Anal. 44(5), 2159–2197 (2006)

    MathSciNet  MATH  Google Scholar 

  3. Becker, R., Braack, M.: A finite element pressure gradient stabilization for the Stokes equations based on local projections. Calcolo 38, 173–199 (2001)

    MathSciNet  MATH  Google Scholar 

  4. Becker, R., Braack, M.: A two-level stabilization scheme for the Navier–Stokes equations. In: Feistauer, M., Dolejší, V., Knobloch, P., Najzar, K. (eds.) Numerical Mathematics and Advanced Applications, pp. 123–130. Springer, Berlin (2004)

    Google Scholar 

  5. Becker, R., Vexler, B.: Optimal control of the convection–diffusion equation using stabilized finite element methods. Numer. Math. 106(3), 349–367 (2007)

    MathSciNet  MATH  Google Scholar 

  6. Boffi, D., Gastaldi, L.: Stability and geometric conservation laws for ALE formulations. Comput. Methods Appl. Mech. Eng. 193, 4717–4739 (2004)

    MathSciNet  MATH  Google Scholar 

  7. Bonito, A., Kyza, I., Nochetto, R.: Time-discrete higher order ale formulations: stability. SIAM J. Numer. Anal. 51, 577–604 (2013)

    MathSciNet  MATH  Google Scholar 

  8. Bonito, A., Kyza, I., Nochetto, R.: Time-discrete higher order ale formulations: a priori error analysis. Numer. Math. 125, 225–257 (2013)

    MathSciNet  MATH  Google Scholar 

  9. Braack, M.: Optimal control in fluid mechanics by finite elements with symmetric stabilization. SIAM J. Control Optim. 48(2), 672–687 (2009)

    MathSciNet  MATH  Google Scholar 

  10. Braack, M., Lube, G.: Finite elements with local projection stabilization for incompressible flow problems. J. Comput. Math. 27(2–3), 116–147 (2009)

    MathSciNet  MATH  Google Scholar 

  11. Brooks, A.N., Hughes, T.J.R.: Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 32, 199–259 (1982)

    MathSciNet  MATH  Google Scholar 

  12. Burman, E.: Consistent SUPG-method for transient transport problems: stability and convergence. Comput. Methods Appl. Mech. Eng. 199, 1114–1123 (2010)

    MathSciNet  MATH  Google Scholar 

  13. Burman, E., Ern, A.: Continuous interior penalty hp-finite element methods for advection and advection–diffusion equations. Math. Comput. 76, 1119–1140 (2007)

    MathSciNet  MATH  Google Scholar 

  14. Burman, E., Fernandez, M., Hansbo, P.: Continuous interior penalty finite element method for Oseen’s equations. SIAM J. Numer. Anal. 44, 1248–1274 (2006)

    MathSciNet  MATH  Google Scholar 

  15. Burman, E., Hansbo, P.: Edge stabilization for Galerkin approximations of convection–diffusion–reaction problems. Comput. Methods Appl. Mech. Eng. 193, 1437–1453 (2004)

    MathSciNet  MATH  Google Scholar 

  16. Codina, R.: Stabilization of incompressibility and convection through orthogonal sub-scales in finite element methods. Comput. Methods Appl. Mech. Eng. 190, 1579–1599 (2000)

    MathSciNet  MATH  Google Scholar 

  17. Codina, R., Blasco, J.: Analysis of a stabilized finite element approximation of the transient convection–diffusion–reaction equation using orthogonal subscales. Comput. Vis. Sci. 4(3), 167–174 (2002)

    MathSciNet  MATH  Google Scholar 

  18. Formaggia, L., Nobile, F.: A stability analysis for the arbitrary Lagrangian Eulerian formulation with finite elements. East-West J. Numer. Math. 7(2), 105–131 (1999)

    MathSciNet  MATH  Google Scholar 

  19. Formaggia, L., Nobile, F.: Stability analysis of second-order time accurate schemes for ALE-FEM. Comput. Methods Appl. Mech. Eng. 193, 4097–4116 (2004)

    MathSciNet  MATH  Google Scholar 

  20. Ganesan, S., Srivastava, S.: ALE-SUPG finite element method for convection-diffusion problems in time-dependent domains: conservative form. Appl. Math. Comput. 303, 128–145 (2017)

    MathSciNet  MATH  Google Scholar 

  21. Ganesan, S., Tobiska, L.: Stabilization by local projection for convection–diffusion and incompressible flow problems. J. Sci. Comput. 43(3), 326–342 (2010)

    MathSciNet  MATH  Google Scholar 

  22. Gastaldi, L.: A priori error estimates for the arbitrary Lagrangian Eulerian formulation with finite elements. East-West J. Numer. Math. 9, 123–156 (2001)

    MathSciNet  MATH  Google Scholar 

  23. Guermond, J.L.: Stabilization of Galerkin approximations of transport equations by subgrid modeling. M2AN Math. Model. Numer. Anal. 33(6), 1293–1316 (1999)

    MathSciNet  MATH  Google Scholar 

  24. Hughes, T.J.R., Franca, L.P., Hulbert, G.M.: A new finite element formulation for computational fluid dynamics: VIII. The Galerkin/least-squares method for advective–diffusion equations. Comput. Methods Appl. Mech. Eng. 73, 173–189 (1989)

    MATH  Google Scholar 

  25. John, V., Novo, J.: Error analysis of the SUPG finite element discretization of evolutionary convection–diffusion–reaction equations. SIAM J. Numer. Anal. 49(3), 1149–1176 (2011)

    MathSciNet  MATH  Google Scholar 

  26. Knobloch, P.: A generalization of the local projection stabilization for convection–diffusion–reaction equations. SIAM J. Numer. Anal. 48(2), 659–680 (2010)

    MathSciNet  MATH  Google Scholar 

  27. Matthies, G., Skrzypacz, P., Tobiska, L.: A unified convergence analysis for local projection stabilisations applied to the Oseen problem. Math. Model. Numer. Anal. 41, 713–742 (2007)

    MathSciNet  MATH  Google Scholar 

  28. Roos, H.G., Stynes, M., Tobiska, L.: Numerical Methods for Singularly Perturbed Differential Equations. Springer, Berlin (2008)

    MATH  Google Scholar 

  29. Srivastava, S., Ganesan, S.: On the temporal discretizations of convection dominated convection–diffusion equations in time-dependent domain. Pro-Mathematica 30(59), 99–137 (2018)

    Google Scholar 

  30. Thomee, V.: Galerkin Finite Element Methods for Parabolic Problems, 3rd edn. Springer, Berlin (2008)

    MATH  Google Scholar 

  31. Tobiska, L., Verfürth, R.: Analysis of a streamline diffusion finite element method for the Stokes and Navier–stokes equations. SIAM J. Numer. Anal. 33, 407–421 (1996)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shweta Srivastava.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, S., Ganesan, S. Local projection stabilization with discontinuous Galerkin method in time applied to convection dominated problems in time-dependent domains. Bit Numer Math 60, 481–507 (2020). https://doi.org/10.1007/s10543-019-00783-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-019-00783-2

Keywords

Mathematics Subject Classification

Navigation