Skip to main content
Log in

Affine zipper fractal interpolation functions

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

This paper introduces a univariate interpolation scheme using a binary parameter called signature such that the graph of the interpolant—which we refer to as affine zipper fractal interpolation function—is obtained as an attractor of a suitable affine zipper. The scaling vector function is identified so that the graph of the corresponding affine zipper fractal interpolation function can be inscribed within a prescribed rectangle. Convergence analysis of the proposed affine zipper fractal interpolant is carried out. It is observed that for a fixed choice of discrete scaling factors, the box counting dimension of the graph of an affine zipper fractal interpolant is independent of the choice of a signature. Several examples of affine zipper fractal interpolants are presented to supplement our theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ali, M., Clarkson, T.G.: Using linear fractal interpolation functions to compress video images. Fractals 2(3), 417–421 (1994)

    Article  Google Scholar 

  2. Assev, V.V., Tetenov, A.V., Kravchenko, A.S.: On self-similar Jordan curves on the plane. Sib. Math. J. 44(3), 379–386 (2003)

    Article  MathSciNet  Google Scholar 

  3. Barnsley, M.F.: Fractals Everywhere. Academic Press, Cambridge (1988)

    MATH  Google Scholar 

  4. Barnsley, M.F.: Fractal functions and interpolation. Constr. Approx. 2, 303–329 (1986)

    Article  MathSciNet  Google Scholar 

  5. Barnsley, M.F.: Fractal image compression. Not. Am. Math. Soc. 43, 657–662 (1996)

    MathSciNet  MATH  Google Scholar 

  6. Barnsley, M.F., Elton, J., Hardin, D., Massopust, P.: Hidden variable fractal interpolation functions. SIAM J. Math. Anal. 20(5), 1218–1242 (1989)

    Article  MathSciNet  Google Scholar 

  7. Barnsley, M.F., Harrington, A.N.: The calculus of fractal interpolation functions. J. Approx. Theory. 57, 14–34 (1989)

    Article  MathSciNet  Google Scholar 

  8. Barnsley, M.F., Massopust, P.R.: Bilinear fractal interpolation and box dimension. J. Approx. Theory. 192, 362–378 (2015)

    Article  MathSciNet  Google Scholar 

  9. Basu, S., Foufoula-Georgiou, E., Porté-Agel, F.: Synthetic turbulence, fractal interpolation, and large-eddy simulation. Phys. Rev. E (2004). https://doi.org/10.1103/PhysRevE.70.026310

  10. Chand, A.K.B., Kapoor, G.P.: Generalized cubic spline fractal interpolation functions. SIAM J. Numer. Anal. 44(2), 655–676 (2006)

    Article  MathSciNet  Google Scholar 

  11. Chand, A.K.B., Viswanathan, P.: A constructive approach to cubic Hermite fractal interpolation function and its constrained aspects. BIT Numer. Math. 53, 841–865 (2013)

    Article  MathSciNet  Google Scholar 

  12. Chen, X., Guo, Q., Xi, L.: The range of an affine fractal interpolation function. Int. J. Nonlinear Sci. 3(3), 181–186 (2007)

    MathSciNet  MATH  Google Scholar 

  13. Conway, J.B.: A Course in Functional Analysis, 2nd edn. Springer, Berlin (1994)

    Google Scholar 

  14. Craciunescu, O.I., Das, R.R., Poulson, J.M., Samulski, T.V.: Three dimensional tumor perfusion reconstruction using fractal interpolation functions. IEEE Trans. Biomed. Eng. 48(4), 462–473 (2001)

    Article  Google Scholar 

  15. Dalla, L.: On the parameter identification problem in the plane and the polar fractal interpolation functions. J. Approx. Theory 101, 289–302 (1999)

    Article  MathSciNet  Google Scholar 

  16. Hutchinson, J.E.: Fractals and self similarity. Indiana Univ. J. Math. 30, 713–747 (1981)

    Article  MathSciNet  Google Scholar 

  17. Kumagai, Y.: Fractal structure of financial high frequency data. Fractals 10(1), 13–18 (2002)

    Article  Google Scholar 

  18. Kurdila, A.J., Sun, T., Grama, P., Ko, J.: Affine fractal interpolation functions and wavelet-based finite elements. Comput. Mech. 17(3), 165–189 (1995)

    Article  MathSciNet  Google Scholar 

  19. Mandelbrot, B.: Fractals: Form, Chance and Dimension. W. H. Freeman, San Francisco (1977)

    MATH  Google Scholar 

  20. Massopust, P.R.: Smooth interpolating curves and surfaces generated by iterated function systems. Z. Anal. Anwend. 12(2), 201–210 (1993)

    Article  MathSciNet  Google Scholar 

  21. Massopust, P.R.: Fractal Functions, Fractal Surfaces, and Wavelets, 2nd edn. Academic Press, San Diego (1994)

    MATH  Google Scholar 

  22. Massopust, P.R.: Interpolation and Approximation with Splines and Fractals. Oxford University Press, Oxford (2010)

    MATH  Google Scholar 

  23. Massopust, P.R.: Local fractal interpolation on unbounded domains. Proc. Edinb. Math. Soc. (2) 61(1), 151–167 (2018)

    Article  MathSciNet  Google Scholar 

  24. Massopust, P.R.: Non-stationary fractal interpolation. Mathematics 7(8), 666 (2019). https://doi.org/10.3390/math7080666

    Article  Google Scholar 

  25. Mazel, D.S., Hayes, M.H.: Using iterated function system to model discrete sequences. IEEE Trans. Sig. Proc. 40(7), 1724–1734 (1992)

    Article  Google Scholar 

  26. Navascués, M.A.: Error bounds for affine fractal interpolation. Math. Ineq. Appl. 9(2), 273–288 (2006)

    MathSciNet  MATH  Google Scholar 

  27. Navascués, M.A., Sebastián, M.V.: Smooth fractal interpolation. J. Inequal. Appl. 2006, 78734, pp. 1–20 (2006)

  28. Navascués, M.A., Sebastián, M.V.: Numerical integration of affine fractal functions. J. Comput. Appl. Math. 252, 169–176 (2013)

    Article  MathSciNet  Google Scholar 

  29. Navascués, M.A.: Affine fractal functions as bases of continuous functions. Quaest. Math., pp. 1–20 (2014)

  30. Ruan, H., Sha, Z., Su, W.: Counterexamples in parameter identification problem of the fractal interpolation functions. J. Approx. Theory 122(1), 121–128 (2003)

    Article  MathSciNet  Google Scholar 

  31. Tetenov, A.V.: Self-similar Jordan arcs and graph-directed systems of similarities. Sib. Math. J. 47(5), 940–949 (2006)

    Article  MathSciNet  Google Scholar 

  32. Véhel, J.L., Daoudi, K., Lutton, E.: Fractal modeling of speech signals. Fractals 2(3), 379–382 (1994)

    Article  Google Scholar 

  33. Wang, H.Y., Yu, J.S.: Fractal interpolation functions with variable parameters and their analytical properties. J. Approx. Theory 175, 1–18 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. B. Chand.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A.K.B. Chand is thankful for the Project: MTR/2017/000574 - MATRICS from the Science and Engineering Research Board (SERB), Government of India. A part of the paper has been presented as a short communication at the International Congress of Mathematician (ICM -2018), Brazil. A.V. Tetenov is supported by Russian Foundation of Basic Research project 18-01-00420 A, and thanks to IIT Madras for facilitating two visits for this joint work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chand, A.K.B., Vijender, N., Viswanathan, P. et al. Affine zipper fractal interpolation functions. Bit Numer Math 60, 319–344 (2020). https://doi.org/10.1007/s10543-019-00774-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-019-00774-3

Keywords

Mathematics Subject Classification

Navigation