Skip to main content
Log in

Robust Magnetized Oil Palm Leaves Ash Nanosilica Composite as Lipase Support: Immobilization Protocol and Efficacy Study

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Strategies to immobilize the individual enzymes are crucial for enhancing catalytic applicability and require a controlled immobilization process. Herein, protocol for immobilizing Candida rugosa lipase (CRL) onto modified magnetic silica derived from oil palm leaves ash (OPLA) was optimized for the effects of concentration of CRL, immobilization time, and temperature, monitored by titrimetric and spectrometric methods. XRD and TGA-DTG spectrometric observations indicated that OPLA-silica was well coated over magnetite (SiO2-MNPs) and CRLs were uniformly bound by covalent bonds to SiO2-MNPs (CRL/Gl-A-SiO2-MNPs). The optimized immobilization protocol showed that in the preparation of CRL/Gl-A-SiO2-MNPs, CRL with 68.3 mg/g protein loading and 74.6 U/g specific activity was achieved using 5 mg/mL of CRL, with an immobilization time of 12 h at 25 °C. The present work also demonstrated that acid-pretreated OPLA is a potential source of renewable silica, envisioning its applicability for practical use in enzymatic catalysis on solid support.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

APTES:

3-aminopropyltriethoxysilane

CRL:

Candida rugosa lipase

FTIR:

Fourier transform infrared

1H NMR:

Proton nuclear magnetic resonance

BET:

Brunauer–Emmett–Teller

BJH:

Barret–Joyner–Halenda

OPL:

Oil palm leaves

OPLA:

Oil palm leaves ash

MNPs:

Magnetic nanoparticles

GC:

Gas chromatography

TGA:

Thermogravimetric analysis

XRD:

X-ray diffraction

TEOS:

Tetraethyl orthosilicate

References

  1. Rouquerol, J., Avnir, D., Everett, D., Fairbridge, C., Haynes, M., Pernicone, N., Ramsay, J., Sing, K., & Unger, K. (1994). Guidelines for the characterization of porous solids. Studies in Surface Science and Catalysis, 87, 1–9.

    CAS  Google Scholar 

  2. Gustafsson, H., Johansson, E. M., Barrabino, A., Odén, M., & Holmberg, K. (2012). Immobilization of lipase from Mucor miehei and Rhizopus oryzae into mesoporous silica—the effect of varied particle size and morphology. Colloids and Surfaces B: Biointerfaces, 100, 22–30.

    PubMed  CAS  Google Scholar 

  3. Magner, E. (2013). Immobilisation of enzymes on mesoporous silicate materials. Chemical Society Reviews, 42(15), 6213–6222.

    PubMed  CAS  Google Scholar 

  4. Zucca, P., & Sanjust, E. (2014). Inorganic materials as supports for covalent enzyme immobilization: methods and mechanisms. Molecules, 19(9), 14139–14194.

    PubMed  PubMed Central  Google Scholar 

  5. Meléndez-Ortiz, H. I., Mercado-Silva, A., García-Cerda, L. A., Castruita, G., Perera-Mercado, Y. A., & Mex. (2013). Hydrothermal synthesis of mesoporous silica MCM-41 using commercial sodium silicate. Journal of the Mexican Chemical Society, 57, 73–79.

    Google Scholar 

  6. Slowing, I. I., Trewyn, B. G., & Lin, V. S. Y. (2007). Mesoporous silica nanoparticles for intracellular delivery of membrane-impermeable proteins. Journal of the American Chemical Society, 129(28), 8845–8849.

    PubMed  CAS  Google Scholar 

  7. Zhao, D., Feng, J., Huo, Q., Melosh, N., Fredrickson, G. H., Chmelka, B. F., & Stucky, G. D. (1998). Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science, 279(5350), 548–552.

    PubMed  CAS  Google Scholar 

  8. Onoja, E., Chandren, S., Razak, F. I. A., & Wahab, R. A. (2018). Enzymatic synthesis of butyl butyrate by Candida rugosa lipase supported on magnetized-nanosilica from oil palm leaves: process optimization, kinetic and thermodynamic study. Journal of the Taiwan Institute of Chemical Engineers, 91, 105–118.

    CAS  Google Scholar 

  9. Onoja, E., Chandren, S., Abdul Razak, F. I., Mahat, N. A., & Wahab, R. A. (2019). Oil palm (Elaeis guineensis) biomass in Malaysia: the present and future prospects. In Waste and Biomass Valorization (Vol. 10, pp. 2099–2117). Nature: Springer. https://doi.org/10.1007/s12649-018-0258-1.

    Chapter  Google Scholar 

  10. Wong, W. K. L., Wahab, R. A., & Onoja, E. (2019). Chemically modified nanoparticles from oil palm ash silica-coated magnetite as support for Candida rugosa lipase-catalysed hydrolysis: kinetic and thermodynamic studies. Chemical Papers, 74(4), 1253–1265. https://doi.org/10.1007/s11696-019-00976-7.

    Article  CAS  Google Scholar 

  11. Onoja, E., Attan, N., Chandren, S., Abdul-Razak, I. F., Abdul-Keyon, A. S., Mahat, N. A., & Wahab, R. A. (2017). Insights into the physicochemical properties of the Malaysian oil palm leaves as an alternative source of industrial materials and bioenergy. Malaysian Journal of Fundamental and Applied Sciences, 13(4), 623–631.

    Google Scholar 

  12. Mohamad, N., Huyop, F., Aboul-Enein, H. Y., Mahat, N. A., & Wahab, R. A. (2015). Response surface methodological approach for optimizing production of geranyl propionate catalysed by carbon nanotubes nanobioconjugates. Biotechnology and Biotechnological Equipment, 29(4), 732–739.

    CAS  Google Scholar 

  13. Isah, A. A., Mahat, N. A., Jamalis, J., Attan, N., Zakaria, I. I., Huyop, F., & Wahab, R. A. (2017). Synthesis of geranyl propionate in a solvent-free medium using Rhizomucor miehei lipase covalently immobilized on chitosan-graphene oxide beads. Preparative Biochemistry and Biotechnology, 47(2), 199–210.

    PubMed  CAS  Google Scholar 

  14. Manan, F. M. A., Rahman, I. N. A., Marzuki, N. H. C., Mahat, N. A., Huyop, F., & Wahab, R. A. (2016). Statistical modelling of eugenol benzoate synthesis using Rhizomucor miehei lipase reinforced nanobioconjugates. Process Biochemistry, 51(2), 249–262.

    CAS  Google Scholar 

  15. Che Marzuki, N. H., Mahat, N. A., Huyop, F., Aboul-Enein, H. Y., & Wahab, R. A. (2015). Sustainable production of the emulsifier methyl oleate by Candida rugosa lipase nanoconjugates. Food and Bioproducts Processing, 96, 211–220.

    CAS  Google Scholar 

  16. Onoja, E., & Wahab, R. A. (2019). Effect of glutaraldehyde concentration on catalytic efficacy of Candida rugosa lipase immobilized onto silica from oil palm leaves. Indonesian Journal of Chemistry, 19(4), 1043–1054.

    Google Scholar 

  17. Rodrigues, R. C., Ortiz, C., Berenguer-Murcia, Á., Torres, R., & Fernández-Lafuente, R. (2013). Modifying enzyme activity and selectivity by immobilization. Chemical Society Reviews, 42(15), 6290–6307.

    PubMed  CAS  Google Scholar 

  18. Lau, S. C., Lim, H. N., Basri, M., Masoumi, H. R. F., Tajudin, A. A., Huang, N. M., Pandikumar, A., Chia, C. H., & Andou, Y. (2014). Enhanced biocatalytic esterification with lipase-immobilized chitosan/graphene oxide beads. Plos One, 9(8), 1–11 www.plosone.org.

    Google Scholar 

  19. Badgujar, K. C., & Bhanage, B. M. (2015). Immobilization of lipase on biocompatible co-polymer of polyvinyl alcohol and chitosan for synthesis of laurate compounds in supercritical carbon dioxide using response surface methodology. Process Biochemistry, 50(8), 1224–1236.

    CAS  Google Scholar 

  20. Elias, N., Chandren, S., Attan, N., Mahat, N. A., Razak, F. I. A., Jamalis, J. F., & Wahab, R. A. (2017). Structure and properties of oil palm-based nanocellulose reinforced chitosan nanocomposite for efficient synthesis of butyl butyrate. Carbohydrate Polymers, 176, 281–292.

    PubMed  CAS  Google Scholar 

  21. Onoja, E., Chandren, S., Razak, F. I. A., & Wahab, R. A. (2018). Extraction of nanosilica from oil palm leaves and its application as support for lipase immobilization. Journal of Biotechnology, 283, 81–96.

    PubMed  CAS  Google Scholar 

  22. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248–254.

    PubMed  CAS  Google Scholar 

  23. Segal, L., Creely, J., Martin, A., & Conrad, C. (1959). An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Textile Research Journal, 29(10), 786–794.

    CAS  Google Scholar 

  24. Zhang, G., Zhao, P., & Xu, Y. (2017). Development of amine-functionalized hierarchically porous silica for CO2 capture. Journal of Industrial and Engineering Chemistry, 54, 59–68.

    CAS  Google Scholar 

  25. Abbas, M. (2014). Fe3O4/SiO2 core/shell nanocubes: novel coating approach with tunable silica thickness and enhancement in stability and biocompatibility. Journal of Nanomedicine & Nanotechnology, 5(6), 1–8.

    Google Scholar 

  26. Khatiri R, Revhani A, Mortazavi S, Hossainalipour M (2012) Preparation and characterization of Fe3O4/SiO2/APTES core-shell nanoparticles. Proceedings of the 4th International Conference on Nanostructures (ICNS4) 12–14

  27. Majoul, N., Aouida, S., & Bessaïs, B. (2015). Progress of porous silicon APTES-functionalization by FTIR investigations. Applied Surface Science, 331, 388–391.

    CAS  Google Scholar 

  28. Gunda, N. S. K., Singh, M., Norman, L., Kaur, K., & Mitra, S. K. (2014). Optimization and characterization of biomolecule immobilization on silicon substrates using (3-aminopropyl) triethoxysilane (APTES) and glutaraldehyde linker. Applied Surface Science, 305, 522–530.

    CAS  Google Scholar 

  29. Milasinovic, N., Jakovetic, S., Knezevic-Jugovic, Z., Milosavljevic, N., Lucic, M., Filipovic, J., & Kalagasidis-Krusic, M. (2014). Catalyzed ester synthesis using Candida rugosa lipase entrapped by poly(N-isopropylacrylamide-co-itaconic acid) hydrogel. The Scientific World Journal, 1–10. https://doi.org/10.1155/2014/142123.

  30. Spinelli, D., Coppi, S., Basosi, R., & Pogni, R. (2014). Biosynthesis of ethyl butyrate with immobilized Candida rugosa lipase onto modified Eupergit®C. Biocatalysis, 1(1), 1–12.

    Google Scholar 

  31. Sahu, A., Badhe, P. S., Adivarekar, R., Ladole, M. R., & Pandit, A. B. (2016). Synthesis of glycinamides using protease immobilized magnetic nanoparticles. Biotechnology Reports, 12, 13–25.

    PubMed  PubMed Central  Google Scholar 

  32. Pasandideh, E. K., Kakavandi, B., Nasseri, S., Mahvi, A. H., Nabizadeh, R., Esrafili, A., & Kalantary, R. R. (2016). Silica-coated magnetite nanoparticles core-shell spheres (Fe3O4@SiO2) for natural organic matter removal. Journal of Environmental Health Science and Engineering, 14(1), 21.

    Google Scholar 

  33. Adam, F., Balakrishnan, S., & Wong, P. L. (2006). Rice husk ash silica as a support material for ruthenium based heterogenous catalyst. Journal of Physical Science, 17, 1–13.

    CAS  Google Scholar 

  34. Kakavandi, B., Jahangiri-Rad, M., Rafiee, M., Esfahani, A. R., & Babaei, A. A. (2016). Development of response surface methodology for optimization of phenol and p-chlorophenol adsorption on magnetic recoverable carbon. Microporous and Mesoporous Materials, 231, 192–206.

    CAS  Google Scholar 

  35. Mahdavi, M., Ahmad, M. B., Haron, M. J., Namvar, F., Nadi, B., Rahman, M. Z., & Amin, J. (2013). Synthesis, surface modification and characterisation of biocompatible magnetic iron oxide nanoparticles for biomedical applications. Molecules, 18(7), 7533–7548.

    PubMed  PubMed Central  CAS  Google Scholar 

  36. Kuperkar, V. V., Lade, V. G., Prakash, A., & Rathod, V. K. (2014). Synthesis of isobutyl propionate using immobilized lipase in a solvent free system: optimization and kinetic studies. Journal of Molecular Catalysis B: Enzymatic, 99, 143–149.

    CAS  Google Scholar 

  37. Mohamad, N., Buang, N. A., Mahat, N. A., Jamalis, J., Huyop, F., Aboul-Enein, H. Y., & Wahab, R. A. (2015). Simple adsorption of Candida rugosa lipase onto multi-walled carbon nanotubes for sustainable production of the flavor ester geranyl propionate. Journal of Industrial and Engineering Chemistry, 32, 99–108.

    CAS  Google Scholar 

  38. Bonazza, H. L., Manzo, R. M., dos Santos, J. C. S., & Mammarella, E. J. (2018). Operational and thermal stability analysis of Thermomyces lanuginosus lipase covalently immobilized onto modified chitosan supports. Applied Biochemistry and Biotechnology, 184(1), 182–196.

    PubMed  CAS  Google Scholar 

  39. Xie, W., & Ma, N. (2010). Enzymatic transesterification of soybean oil by using immobilized lipase on magnetic nano-particles. Biomass and Bioenergy, 34(6), 890–896.

    CAS  Google Scholar 

  40. Abdul Manan, F. M., Attan, N., Widodo, N., Aboul-Enein, H. Y., & Wahab, R. A. (2018). Rhizomucor miehei lipase immobilized on reinforced chitosan-chitin nanowhiskers support for synthesis of eugenyl benzoate. Preparative Biochemistry & Biotechnology, 48(1), 92–102.

    CAS  Google Scholar 

  41. Mendes, A. A., de Castro, H. F., Rodrigues, D. S., Adriano, W. S., Tardioli, P. W., Mammarella, E. J., Giordano, R. C., & Giordano, R. L. C. (2011). Multipoint covalent immobilization of lipase on chitosan hybrid hydrogels: influence of the polyelectrolyte complex type and chemical modification on the catalytic properties of the biocatalysts. Journal of Industrial Microbiology and Biotechnology, 38(8), 1055–1066.

    PubMed  CAS  Google Scholar 

  42. Chauhan, N., Narang, J., & Pundir, C. (2014). Covalent immobilization of lipase, glycerol kinase, glycerol-3-phosphate oxidase & amp; horseradish peroxidase onto plasticized polyvinyl chloride (PVC) strip & amp; its application in serum triglyceride determination. Indian Journal of Medical Research, 139(4), 603–609.

    PubMed  CAS  Google Scholar 

  43. Daniel, R. M., & Danson, M. J. (2013). Temperature and the catalytic activity of enzymes: a fresh understanding. FEBS Letters, 587(17), 2738–2743.

    PubMed  CAS  Google Scholar 

  44. Arcus, V. L., Prentice, E. J., Hobbs, J. K., Mulholland, A. J., Van der Kamp, M. W., Pudney, C. R., Parker, E. J., & Schipper, L. A. (2016). On the temperature dependence of enzyme-catalyzed rates. Biochemistry, 55(12), 1681–1688.

    PubMed  CAS  Google Scholar 

  45. Ju, I. B., Lim, H. W., Jeon, W., Suh, D. J., Park, M. J., & Suh, Y. W. (2011). Kinetic study of catalytic esterification of butyric acid and n-butanol over Dowex 50Wx8-400. Chemical Engineering Journal, 168(1), 293–302.

    CAS  Google Scholar 

  46. Arica, M. Y., Kaçar, Y., Ergene, A., & Denizli, A. (2001). Reversible immobilization of lipase on phenylalanine containing hydrogel membranes. Process Biochemistry, 36(8-9), 847–854.

    CAS  Google Scholar 

  47. Queiroz, J. A., Tomaz, C. T., & Cabral, J. M. S. (2001). Hydrophobic interaction chromatography of proteins. Journal of Biotechnology, 87(2), 143–159.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the Fundamental Research Grant Scheme from the Ministry of Higher Education Malaysia (R.J130000.7826.4F649) and Research University Grant Scheme (Q.J130000.2526.13H09) from the Universiti Teknologi Malaysia, Johor.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Emmanuel Onoja or Roswanira Abdul Wahab.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Onoja, E., Wahab, R.A. Robust Magnetized Oil Palm Leaves Ash Nanosilica Composite as Lipase Support: Immobilization Protocol and Efficacy Study. Appl Biochem Biotechnol 192, 585–599 (2020). https://doi.org/10.1007/s12010-020-03348-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03348-0

Keywords

Navigation