Skip to main content
Log in

Three-dimensional angle-domain double-square-root migration in VTI media for the large-scale wide-azimuth seismic data

  • Research Article - Applied Geophysics
  • Published:
Acta Geophysica Aims and scope Submit manuscript

Abstract

With the development of oil and gas exploration, the conventional seismic migration imaging technology based on the isotropic assumption no longer meets our current requirements for high-resolution images. Migration in anisotropic media has become an essential requirement for oil and gas exploration. Marine seismic exploration has gradually entered the wide-azimuth and high-density seismic data acquisition stage. However, even for current large high-performance computer clusters, it is still very difficult to implement pre-stack depth migration based on shot gathers. Thus, we present a double-square-root (DSR) equation based on three-dimensional (3D) pre-stack depth migration in midpoint-offset domain for a wide-azimuth dataset in transversely isotropic media with a vertical symmetry axis (VTI media). Considering VTI media, the DSR migration requires extensive memory and computation; we adopted the phase-shift plus interpolation approach to improve the computational efficiency. Then, we extract the angle-domain common-image gathers (ADCIGs) during DSR migration. For real large-scale seismic data, we designed an effective parallel implementation of 3D DSR migration with ADCIGs outputs. Finally, we applied the proposed angle-domain VTI DSR migration on wide-azimuth SEG/EAGE salt dome-based data and real data from the China South Sea. Numerical and practical data illustrate the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alkhalifah T (1998) Acoustic approximations for processing in transversely isotropic media. Geophysics 63(2):623–631

    Google Scholar 

  • Alkhalifah T (2000a) An acoustic wave equation for anisotropic media. Geophysics 65(4):1239–1250. https://doi.org/10.1190/1.1444815

    Article  Google Scholar 

  • Alkhalifah T (2000b) Prestack phase-shift migration of separate offsets. Geophysics 65(4):1179–1194

    Google Scholar 

  • Alkhalifah T (2000c) The offset-midpoint traveltime equation for transversely isotropic media. Geophysics 65(4):1316–1325

    Google Scholar 

  • Alkhalifah T (2004) Azimuth moveout correction for transversely isotropic media. Geophys Prospect 52(1):39–48

    Google Scholar 

  • Alkhalifah T (2012) Prestack exploding reflector modeling and migration for anisotropic media: a parameter estimation tool. In 82th SEG annual international meeting. Expanded abstracts, pp 1–5

  • Alkhalifah T (2013) Prestack wavefield approximations. Geophysics 78(5):T141–T149

    Google Scholar 

  • Alkhalifah T (2015) Prestack exploding reflector modeling and migration for anisotropic media. Geophys Prospect 63(1):2–10

    Google Scholar 

  • Alkhalifah T, Biondi B (2004) Numerical analysis of the azimuth moveout operator for vertically inhomogeneous media. Geophysics 69(2):554–561

    Google Scholar 

  • Alkhalifah T, Fomel S (2011) Angle gathers in wave-equation imaging for transversely isotropic media. Geophys Prospect 59(3):422–431

    Google Scholar 

  • Alkhalifah T, Larner K (1994) Migration errors in transversely isotropic media. Geophysics 59(9):1405–1418

    Google Scholar 

  • Alkhalifah T, Fomel S, Biondi B (2001) The space–time domain: theory and modelling for anisotropic media. Geophys J Int 144(1):105–113

    Google Scholar 

  • Alkhalifah T, Fomel S, Wu Z (2015) Source-receiver two-way wave extrapolation for prestack exploding-reflector modeling and migration. Geophys Prospect 63:23–34

    Google Scholar 

  • Barley B, Summers T (2007) Multi-azimuth and wide-azimuth seismic: shallow to deep water, exploration to production. Lead Edge 26(4):450–458. https://doi.org/10.1190/1.2723209

    Article  Google Scholar 

  • Baysal E, Kosloff DD, Sherwood JWC (1983) Reverse time migration. Geophysics 48(11):1514–1524. https://doi.org/10.1190/1.1441434

    Article  Google Scholar 

  • Bevc D, Fliedner M, Crawley S, Biondi B (2003) Wave equation imaging comparisons: survey sinking vs. shot profile methods. In 73th SEG annual international meeting. Expanded abstracts, pp 885–888. https://doi.org/10.1190/1.1818082

  • Biondi B (2002) Reverse time migration in midpoint-offset coordinates. SEP Rep 111:149–156

    Google Scholar 

  • Biondi B (2007) Angle-domain common-image gathers from anisotropic migration. Geophysics 72(2):581–591

    Google Scholar 

  • Biondi B, Chemingui N (1994) Transformation of 3-D prestack data by azimuth moveout (AMO). In 64th SEG annual international meeting. Expanded abstracts, pp 1541–1544. https://doi.org/10.1190/1.1822833

  • Biondi B, Palacharla G (1996) 3D prestack migration of common-azimuth data. Geophysics 61(6):1822–1832. https://doi.org/10.1190/1.1822730

    Article  Google Scholar 

  • Biondi B, Symes W (2004) Angle-domain common-image gathers for migration velocity analysis by wavefield-continuation imaging. Geophysics 69(5):1283–1298. https://doi.org/10.1190/1.1801945

    Article  Google Scholar 

  • Biondi B, Fomel S, Chemingui N (1998) Azimuth moveout for 3-D prestack imaging. Geophysics 63(2):574–588. https://doi.org/10.1190/1.1444357

    Article  Google Scholar 

  • Bouska J (2008) Advantages of wide-patch, wide-azimuth ocean-bottom seismic reservoir surveillance. Lead Edge 27(12):1662–1681. https://doi.org/10.1190/1.3036972

    Article  Google Scholar 

  • Cai J, Fang W, Wang H (2013) Azimuth–opening angle domain imaging in 3D Gaussian beam depth migration. J Geophys Eng 10(2):025013

    Google Scholar 

  • Cheng J, Wang H, Ma Z, Yang S (2003) Cross-line common-offset migration for narrow azimuth dataset. In73th SEG annual international meeting. Expanded abstracts, pp 901–904. https://doi.org/10.1190/1.1818087

  • Cheng J, Wang H, Ma Z (2005) Double square root equation migration methods of narrow azimuth seismic data. Chin J Geophys 48(2):399–405 (in Chinese)

    Google Scholar 

  • Cheng J, Ma Z, Geng J, Wang H (2008) Double-square-root one-way wave equation prestack tau migration in heterogeneous media. Geophys Prospect 56(1):69–85. https://doi.org/10.1111/j.1365-2478.2007.00667.x

    Article  Google Scholar 

  • Claerbout JF (1985) Imaging the Earth’s interior. Blackwell, Oxford

    Google Scholar 

  • Cohen JK (1997) Analytic study of the effective parameters for determination of the NMO velocity function in transversely isotropic media. Geophysics 62(6):1855–1866

    Google Scholar 

  • de Hoop MV, Le Rousseau JH, Wu R-S (2000) Generalization of the phase-screen approximation for the scattering of acoustic waves. Wave Motion 31(1):43–70. https://doi.org/10.1016/S0165-2125(99)00026-8

    Article  Google Scholar 

  • de Hoop MV, Le Rousseau JH, Biondi B (2003) Symplectic structure of wave-equation imaging: a path-integral approach based on the double-square-root equation. Geophys J Int 153(1):52–74. https://doi.org/10.1046/j.1365-246X.2003.01877.x

    Article  Google Scholar 

  • Duchkov A, de Hoop MV (2009) Extended isochron rays in prestack depth migration. In 79th SEG annual international meeting. Expanded abstracts, pp 3610–3614

  • Fomel S (2004) Theory of 3-D angle gathers in wave-equation imaging. In 74th SEG annual international meeting. Expanded abstracts, pp 1053–1056. https://doi.org/10.1190/1.1851067

  • Frigo M, Steven GJ (2005) The design and implementation of FFTW3. Proc IEEE 93(2):216–231

    Google Scholar 

  • Gazdag J, Sguazzero P (1984) Migration of seismic data by phase shift plus interpolation. Geophysics 49(2):124–131. https://doi.org/10.1190/1.1441643

    Article  Google Scholar 

  • Gray SH, May WP (1994) Kirchhoff migration using eikonal equation traveltimes. Geophysics 59(5):810–817. https://doi.org/10.1190/1.1443639

    Article  Google Scholar 

  • Hao Q, Stovas A, Alkhalifah T (2015) The offset-midpoint traveltime pyramid in 3D HTI media. Geophysics 80(1):T51–T62

    Google Scholar 

  • Hao Q, Stovas A, Alkhalifah T (2016) The offset-midpoint traveltime pyramid of P-waves in homogeneous orthorhombic media. Geophysics 81(5):C151–C162

    Google Scholar 

  • Herman J, Larner K (1995) Prestack migration error in transversely isotropic media. In 65th SEG annual international meeting. Expanded abstracts, pp 1204–1207

  • Hu J, Wang H, Wang X (2015) Angle gathers from reverse time migration using analytic wavefield propagation and decomposition in the time domain. Geophysics 81(1):S1–S9

    Google Scholar 

  • Jin S, Wu R-S (1999) Common offset pseudo-screen depth migration. In 69th SEG annual international meeting. Expanded abstracts, pp 1516–1519. https://doi.org/10.1190/1.1820809

  • Jin S, Mosher CC, Wu R-S (2002) Offset-domain pseudoscreen prestack depth migration. Geophysics 67(6):1895–1902. https://doi.org/10.1190/1.1527089

    Article  Google Scholar 

  • Jin H, McMechan GA, Guan H (2014) Comparison of methods for extracting ADCIGs from RTM. Geophysics 79(3):S89–S103

    Google Scholar 

  • Ke B, Zhao B, Liu C, Fang Y (2004) Wave-equation datuming based on a single shot gather. In 74th SEG annual international meeting. Expanded abstracts, pp 2156–2159. https://doi.org/10.1190/1.1845210

  • Li V, Guitton A, Tsvankin I, Alkhalifah T (2018) Image-domain wavefield tomography for VTI media. Geophysics 84(2):1MA-Z11

    Google Scholar 

  • Liu Z, Bleistein N (1995) Migration velocity analysis: theory and an iterative algorithm. Geophysics 60(1):142–153. https://doi.org/10.1190/1.1443741

    Article  Google Scholar 

  • Liu S, Wang H, Yang Q (2014) Traveltime computation and imaging from rugged topography in 3D TTI media. J Geophys Eng 11(1):0150031

    Google Scholar 

  • Liu S, Wang H, Feng B (2015) The characteristic wave decomposition and imaging in VTI media. J Appl Geophys 115:51–58

    Google Scholar 

  • Liu S, Gu H, Tang Y, Han B, Wang H, Liu D (2018) Angle-domain common imaging gather extraction via Kirchhoff prestack depth migration based on a traveltime table in transversely isotropic media. J Geophys Eng 15(2):568–575

    Google Scholar 

  • Michell S, Shoshitaishvili E, Chergotis D, Sharp J, Etgen J (2006) Wide azimuth streamer imaging of Mad Dog; Have we solved the subsalt imaging problem? In 76th SEG annual international meeting. Expanded abstracts, pp 2905–2909. https://doi.org/10.1190/1.2370130

  • Mulder WA, Plessix RE (2003) One-way and two-way wave-equation migration. In 73rd SEG annual international meeting. Expanded abstracts, pp 881–884. https://doi.org/10.1190/1.1818081

  • Oh JW, Alkhalifah T (2018) Optimal full-waveform inversion strategy for marine data in azimuthally rotated elastic orthorhombic media. Geophysics 83(4):R307–R320

    Google Scholar 

  • Popovici AM (1996) Prestack migration by split-step DSR. Geophysics 61(5):1412–1416

    Google Scholar 

  • Reshef M (1991) Depth migration from irregular surfaces with depth extrapolation methods. Geophysics 56(1):119–122. https://doi.org/10.1190/1.1442947

    Article  Google Scholar 

  • Sava P, Alkhalifah T (2013) Wide-azimuth angle gathers for anisotropic wave-equation migration. Geophys Prospect 61(1):75–91. https://doi.org/10.1111/j.1365-2478.2012.01024.x

    Article  Google Scholar 

  • Sava PC, Fomel S (2003) Angle-domain common-image gathers by wavefield continuation methods. Geophysics 68(3):1065–1074. https://doi.org/10.1190/1.1581078

    Article  Google Scholar 

  • Sava P, Fomel S (2005) Coordinate-independent angle-gathers or wave equation migration. In 75th SEG annual international meeting. Expanded abstracts, pp 2052–2055

  • Sava P, Vlad I (2011) Wide azimuth angle gathers for wave equation migration. Geophysics 76(3):S131–S141

    Google Scholar 

  • Sava PC, Biondi B, Fomel S (2001) Amplitude-preserved common image gathers by wave-equation migration. In 71st SEG annual international meeting. Expanded abstracts, pp 296–299. https://doi.org/10.1190/1.1816598

  • Song X, Fomel S (2011) Fourier finite-difference wave propagation. Geophysics 76(5):T123–T129. https://doi.org/10.1190/geo2010-0287.1

    Article  Google Scholar 

  • Stoffa PL, Fokkema JT, de Luna Freire RM, Kessinger WP (1990) Split-step Fourier migration. Geophysics 55(4):410–421

    Google Scholar 

  • Sun H, Huang L, Fehler MC (2005) Globally optimized Fourier finite-difference migration in the offset domain. In 75th SEG annual international meeting. Expanded abstracts, pp 1858–1861. https://doi.org/10.1190/1.2148065

  • Thomsen L (1986) Weak elastic anisotropy. Geophysics 51(10):1954–1966. https://doi.org/10.1190/1.1442051

    Article  Google Scholar 

  • Tsvankin I (2012) Seismic signatures and analysis of reflection data in anisotropic media. Society of Exploration Geophysicists, 3rd ed

  • VerWest BJ, Lin D (2007) Modeling the impact of wide-azimuth acquisition on subsalt imaging. Geophysics 72(5):SM241–SM250. https://doi.org/10.1190/1.2736516

    Article  Google Scholar 

  • Whitmore ND (1983) Iterative depth migration by backward time propagation. In 53rd SEG annual international meeting. Expanded abstracts, pp 382–385. https://doi.org/10.1190/1.1893867

  • Wu R-S (1994) Wide-angle elastic wave one-way propagation in heterogeneous media and an elastic wave complex-screen method. J Geophys Res 99:751–766. https://doi.org/10.1029/93JB02518

    Article  Google Scholar 

  • Wu R-S (1996) Synthetic seismograms in heterogeneous media by one-return approximation. Pure Appl Geophys 148:155–173

    Google Scholar 

  • Wu G, Liang K, Wang H (2007) High-order one-way generalized-screen propagation operator of qP-wave in VTI medium. Oil Geophys Prospect 42(6):640–650 (in Chinese)

    Google Scholar 

  • Wu C, Wang H, Zhou Y, Hu J (2019) Angle-domain common-image gathers in reverse-time migration by combining the Poynting vector with local-wavefield decomposition. Geophys Prospect 67(8):2035–2060

    Google Scholar 

  • Xu S, Zhang Y, Tang B (2011) 3D angle gathers from reverse time migration. Geophysics 76(2):S77–S92

    Google Scholar 

  • Yan R, Xie XB (2012) AVA analysis based on RTM angle domain common image gather. In 82nd SEG annual international meeting. Expanded abstracts, pp 1–6. https://doi.org/10.1190/segam2012-0521.1

  • Yan L, Larry RL, Lawton DC (2004) Influence of seismic anisotropy on prestack depth migration. Geophysics 23(1):30–36

    Google Scholar 

  • Yilmaz O, Claerbout JF (1980) Prestack partial migration. Geophysics 45(12):1753–1779

    Google Scholar 

  • Yuan SY, Wang SX, Luo YN, Wei WW, Wang GC (2019) Impedance inversion by using the low-frequency full-waveform inversion result as an a priori model. Geophysics 84(2):R149–R164

    Google Scholar 

Download references

Acknowledgements

The authors thank the sponsors of WPI group for their financial support and help. WPI’s research works are also financially supported by National Key R&D Program of China (2019YFC0312004, 2018YFA0702503), National Natural Science Foundation of China (41774126), the great and special project (2016ZX05024-001, 2016ZX05006-002). We kindly acknowledge FFTW Free Software for the computation. We really appreciate the associate editor and Tariq Alkhalifah and an anonymous reviewer for providing so many useful comments and suggestions to improve the clarity and completeness of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Feng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, C., Feng, B., Wang, H. et al. Three-dimensional angle-domain double-square-root migration in VTI media for the large-scale wide-azimuth seismic data. Acta Geophys. 68, 1021–1037 (2020). https://doi.org/10.1007/s11600-020-00450-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11600-020-00450-z

Keywords

Navigation