Skip to main content
Log in

Comparative RNA-Seq profiling of a resistant and susceptible peanut (Arachis hypogaea) genotypes in response to leaf rust infection caused by Puccinia arachidis

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

The goal of this study was to identify differentially expressed genes (DEGs) responsible for peanut plant (Arachis hypogaea) defence against Puccinia arachidis (causative agent of rust disease). Genes were identified using a high-throughput RNA-sequencing strategy. In total, 86,380,930 reads were generated from RNA-Seq data of two peanut genotypes, JL-24 (susceptible), and GPBD-4 (resistant). Gene Ontology (GO) and KEGG analysis of DEGs revealed essential genes and their pathways responsible for defence response to P. arachidis. DEGs uniquely upregulated in resistant genotype included pathogenesis-related (PR) proteins, MLO such as protein, ethylene-responsive factor, thaumatin, and F-box, whereas, other genes down-regulated in susceptible genotype were Caffeate O-methyltransferase, beta-glucosidase, and transcription factors (WRKY, bZIP, MYB). Moreover, various genes, such as Chitinase, Cytochrome P450, Glutathione S-transferase, and R genes such as NBS-LRR were highly up-regulated in the resistant genotype, indicating their involvement in the plant defence mechanism. RNA-Seq analysis data were validated by RT-qPCR using 15 primer sets derived from DEGs producing high correlation value (R2 = 0.82). A total of 4511 EST-SSRs were identified from the unigenes, which can be useful in evaluating genetic diversity among genotypes, QTL mapping, and plant variety improvement through marker-assisted breeding. These findings will help to understand the molecular defence mechanisms of the peanut plant in response to P. arachidis infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available in the GenBank repository. For rust infected samples, resources are BioProject ID: PRJNA489546: Arachis hypogaea (Resistant GPBD-4 Infected) SRA ID SRX4779274 and Arachis hypogaea (susceptible JL-24 Infected) SRA ID SRX4779275 while for control samples, they are BioProject ID: PRJNA490412: Arachis hypogaea (Resistant GPBD-4 control) SRA ID SRX4782027 and Arachis hypogaea (susceptible JL-24 control) SRA ID SRX4782028. https://www.ncbi.nlm.nih.gov/bioproject/PRJNA489546https://www.ncbi.nlm.nih.gov/bioproject/PRJNA490412.

Abbreviations

GO:

Gene Ontology

DEG:

Differentially Expressed Gene

NGS:

Next Generation Sequencing

PR:

Pathogenesis related

GST:

Glutathione S-Transferase

JA:

Jasmonic Acid

ERF:

Ethylene responsive factor

RT-qPCR:

Reverse Transcription quantitative PCR

References

  • Abad LR, D'Urzo MP, Liu D, Narasimhan ML, Reuveni M, Zhu JK, Niu X, Singh NK, Hasegawa PM, Bressan RA (1996) Antifungal activity of tobacco osmotin has specificity and involves plasma membrane permeabilization. Plant Sci 118(1):11–23

    Article  CAS  Google Scholar 

  • Alves M, Dadalto S, Gonçalves A, de Souza G, Barros V, Fietto L (2014) Transcription factor functional protein-protein interactions in plant defense responses. Proteomes 2(1):85–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ayyappan V, Kalavacharla V, Thimmapuram J, Bhide KP, Sripathi VR, Smolinski TG, Manoharan M, Thurston Y, Todd A, Kingham B (2015) Genome-wide profiling of histone modifications (H3K9me2 and H4K12ac) and gene expression in rust (Uromyces appendiculatus) inoculated common bean (Phaseolus vulgaris L.). PLoS ONE 10(7):e0132176

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Beier S, Thiel T, Münch T, Scholz U, Mascher M (2017) MISA-web: a web server for microsatellite prediction. Bioinformatics 33(16):2583–2585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bencke-Malato M, Cabreira C, Wiebke-Strohm B, Bücker-Neto L, Mancini E, Osorio MB, Homrich MS, Turchetto-Zolet AC, De Carvalho MC, Stolf R (2014) Genome-wide annotation of the soybean WRKY family and functional characterization of genes involved in response to Phakopsora pachyrhizi infection. BMC Plant Biol 14(1):236

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bosamia TC, Mishra GP, Thankappan R, Dobaria JR (2015) Novel and stress relevant EST derived SSR markers developed and validated in peanut. PLoS ONE 10(6):e0129127

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brown J, Pirrung M, McCue LA (2017) FQC Dashboard: integrates FastQC results into a web-based, interactive, and extensible FASTQ quality control tool. Bioinformatics 33(19):3137–3139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Canonne J, Froidure-Nicolas S, Rivas S (2011) Phospholipases in action during plant defense signaling. Plant Signal Behav 6(1):13–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cantu D, Segovia V, MacLean D, Bayles R, Chen X, Kamoun S, Dubcovsky J, Saunders DG, Uauy C (2013) Genome analyses of the wheat yellow (stripe) rust pathogen Puccinia striiformis f. sp. tritici reveal polymorphic and haustorial expressed secreted proteins as candidate effectors. BMC Genom 14(1):270

    Article  CAS  Google Scholar 

  • Chandra S, Singh D, Pathak J, Kumari S, Kumar M, Poddar R, Balyan HS, Gupta PK, Prabhu KV, Mukhopadhyay K (2016) De novo assembled wheat transcriptomes delineate differentially expressed host genes in response to leaf rust infection. PLoS ONE 11(2):e0148453. https://doi.org/10.1371/journal.pone.0148453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L, Shi H, Heng J, Wang D, Bian K (2019) Antimicrobial, plant growth-promoting and genomic properties of the peanut endophyte Bacillus velezensis LDO2. Microbiol Res 218:41–48

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Li H, Pandey MK, Yang Q, Wang X, Garg V, Li H, Chi X, Doddamani D, Hong Y (2016) Draft genome of the peanut A-genome progenitor (Arachis duranensis) provides insights into geocarpy, oil biosynthesis, and allergens. Proc Natl Acad Sci 113(24):6785–6790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Ren X, Zhou X, Huang L, Yan L, Lei Y, Liao B, Huang J, Huang S, Wei W (2014) Dynamics in the resistant and susceptible peanut (Arachis hypogaea L.) root transcriptome on infection with the Ralstonia solanacearum. BMC Genom 15(1):1078

    Article  CAS  Google Scholar 

  • Dobin A, Gingeras TR (2015) Mapping RNA-seq reads with STAR. Curr Protoc Bioinformatics 51(1):11–14

    Article  PubMed  PubMed Central  Google Scholar 

  • Garnica DP, Upadhyaya NM, Dodds PN, Rathjen JP (2013) Strategies for wheat stripe rust pathogenicity identified by transcriptome sequencing. PLoS ONE 8(6):e67150. https://doi.org/10.1371/journal.pone.0067150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosh S, Chan CKK (2016) Analysis of RNA-Seq data using TopHat and Cufflinks. In: Plant Bioinformatics. Humana Press, New York, NY, pp 339–361

    Chapter  Google Scholar 

  • Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29(7):644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamid R, Marashi H, Tomar RS, Malekzadeh Shafaroudi S, Sabara PH (2019) Transcriptome analysis identified aberrant gene expression in pollen developmental pathways leading to CGMS in cotton (Gossypium hirsutum L.). PloS ONE 14(6):e0218381. https://doi.org/10.1371/journal.pone.0218381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamid R, Tomar RS, Marashi H, Shafaroudi SM, Golakiya BA, Mohsenpour M (2018) Transcriptome profiling and cataloging differential gene expression in floral buds of fertile and sterile lines of cotton (Gossypium hirsutum L.). Gene 660:80–91

    Article  CAS  PubMed  Google Scholar 

  • Heyman J, Canher B, Bisht A, Christiaens F, De Veylder L (2018) Emerging role of the plant ERF transcription factors in coordinating wound defense responses and repair. J Cell Sci 131(2):jcs208215

    Article  PubMed  CAS  Google Scholar 

  • Hossain MZ, Ishiga Y, Yamanaka N, Ogiso-Tanaka E, Yamaoka Y (2018) Soybean leaves transcriptomic data dissects the phenylpropanoid pathway genes as a defence response against Phakopsora pachyrhizi. Plant Physiol Biochem 132:424–433

    Article  CAS  PubMed  Google Scholar 

  • Jain S, Chittem K, Brueggeman R, Osorno JM, Richards J, Nelson BD Jr (2016) Comparative transcriptome analysis of resistant and susceptible common bean genotypes in response to soybean cyst nematode infection. PLoS ONE 11(7):e0159338

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jiang S, Sun Y, Wang S (2011) Selection of reference genes in peanut seed by real-time quantitative polymerase chain reaction. Int J Food Sci Technol 46(10):2191–2196

    Article  CAS  Google Scholar 

  • Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28(1):27–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kapadia CV, Mahatma MK, Parekh MJ, Patel N, Tomar RS (2015) Identification of resistance gene analogs (rgas) from highly wilt resistant castor (Ricinus Communis L.) Genotype. Res J Biotechnol 10(5):16–26

    CAS  Google Scholar 

  • Kawahara Y, Oono Y, Kanamori H, Matsumoto T, Itoh T, Minami E (2012) Simultaneous RNA-seq analysis of a mixed transcriptome of rice and blast fungus interaction. PLoS ONE 7(11):e49423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kesten C, Menna A, Sanchez-Rodriguez C (2017) Regulation of cellulose synthesis in response to stress. Curr Opin Plant Biol 40:106–113

    Article  CAS  PubMed  Google Scholar 

  • Koringa PG, Jakhesara SJ, Bhatt VD, Patel AB, Dash D, Joshi CG (2013) Transcriptome analysis and SNP identification in SCC of horn in (Bos indicus) Indian cattle. Gene 530(1):119–126

    Article  CAS  PubMed  Google Scholar 

  • Laura M, Borghi C, Bobbio V, Allavena A (2015) The effect on the transcriptome of Anemone coronaria following infection with rust (Tranzschelia discolor). PLoS ONE 10(3):e0118565. https://doi.org/10.1371/journal.pone.0118565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee H-A, Yeom S-I (2015) Plant NB-LRR proteins: tightly regulated sensors in a complex manner. Brief Funct Genomics 14(4):233–242

    Article  CAS  PubMed  Google Scholar 

  • Li J, Han S, Ding X, He T, Dai J, Yang S, Gai J (2015) Comparative transcriptome analysis between the cytoplasmic male sterile line NJCMS1A and its maintainer NJCMS1B in soybean (Glycine max (L.) Merr.). PLoS ONE 10(5):e0126771

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu J-J, Ekramoddoullah AK (2006) The family 10 of plant pathogenesis-related proteins: their structure, regulation, and function in response to biotic and abiotic stresses. Physiol Mol Plant Pathol 68(1–3):3–13

    Article  CAS  Google Scholar 

  • Liu J-J, Sturrock RN, Benton R (2013a) Transcriptome analysis of Pinus monticola primary needles by RNA-seq provides novel insight into host resistance to Cronartium ribicola. BMC Genom 14(1):884

    Article  CAS  Google Scholar 

  • Liu J, Wang X, Zhang T, Li X (2017) Assessment of active bacteria metabolizing phenolic acids in the peanut (Arachis hypogaea L.) rhizosphere. Microbiol Res 205:118–124

    Article  CAS  PubMed  Google Scholar 

  • Liu M-M, Xing Y-M, Zhang D-W, Guo S-X (2015) Transcriptome analysis of genes involved in defence response in Polyporus umbellatus with Armillaria mellea infection. Sci Rep 5:16075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu N, Sun Y, Pei Y, Zhang X, Wang P, Li X, Li F, Hou Y (2018) A pectin methylesterase inhibitor enhances resistance to Verticillium wilt. Plant physiol 176(3):2202–2220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Z, Chen T, Ma L, Zhao Z, Zhao PX, Nan Z, Wang Y (2013b) Global transcriptome sequencing using the Illumina platform and the development of EST-SSR markers in autotetraploid alfalfa. PLoS ONE 8(12):e83549

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  • Mao G, Meng X, Liu Y, Zheng Z, Chen Z, Zhang S (2011) Phosphorylation of a WRKY transcription factor by two pathogen-responsive MAPKs drives phytoalexin biosynthesis in Arabidopsis. Plant Cell 23(4):1639–1653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mhaske SD, Mahatma MK, Jha S, Singh P, Mahatma L, Parekh VB, Ahmad T (2013) Castor (Ricinus communis L.) Rc-LOX5 plays important role in wilt resistance. Ind Crops Prod 45:20–24

    Article  CAS  Google Scholar 

  • Mondal S, Badigannavar AM (2018) Mapping of a dominant rust resistance gene revealed two R genes around the major Rust_QTL in cultivated peanut (Arachis hypogaea L.). Theor Appl Genet 131:1–11

    Article  CAS  Google Scholar 

  • Mondal S, Badigannavar AM, Murty G (2008) RAPD markers linked to a rust resistance gene in cultivated groundnut (Arachis hypogaea L.). Euphytica 159(1–2):233–239

    CAS  Google Scholar 

  • Oliveros JC (2007) VENNY. An interactive tool for comparing lists with Venn Diagrams. http://bioinfogp.cnb.csic.es/tools/venny/index.html

  • Onaga G, Wydra K (2016) Chapter 10: Advances in plant tolerance to biotic stresses. In: Plant Genome, pp 229–272. https://doi.org/10.5772/64351

  • Peng Z, Liu F, Wang L, Zhou H, Paudel D, Tan L, Maku J, Gallo M, Wang J (2017) Transcriptome profiles reveal gene regulation of peanut (Arachis hypogaea L.) nodulation. Sci Rep 7(1):1–12

    Article  CAS  Google Scholar 

  • Qiu JL, Fiil BK, Petersen K, Nielsen HB, Botanga CJ, Thorgrimsen S, Palma K, Suarez-Rodriguez MC, Sandbech-Clausen S, Lichota J (2008) Arabidopsis MAP kinase 4 regulates gene expression through transcription factor release in the nucleus. EMBO J 27(16):2214–2221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajkumar AP, Qvist P, Lazarus R, Lescai F, Ju J, Nyegaard M, Mors O, Børglum AD, Li Q, Christensen JH (2015) Experimental validation of methods for differential gene expression analysis and sample pooling in RNA-seq. BMC Genom 16(1):548

    Article  CAS  Google Scholar 

  • Schmieder R, Edwards R (2011) Quality control and preprocessing of metagenomic datasets. Bioinformatics 27(6):863–864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shafiei R, Hang C, Kang JG, Loake GJ (2007) Identification of loci controlling non-host disease resistance in Arabidopsis against the leaf rust pathogen Puccinia triticina. Mol Plant Pathol 8(6):773–784

    Article  CAS  PubMed  Google Scholar 

  • Soria-Guerra RE, Rosales-Mendoza S, Chang S, Haudenshield JS, Padmanaban A, Rodriguez-Zas S, Hartman GL, Ghabrial SA, Korban SS (2010) Transcriptome analysis of resistant and susceptible genotypes of Glycine tomentella during Phakopsora pachyrhizi infection reveals novel rust resistance genes. Theor Appl Genet 120(7):1315–1333

    Article  CAS  PubMed  Google Scholar 

  • Subrahmanyam P, McDonald D, Waliyar F, Reddy L, Nigam S, Gibbons R, Rao VR, Singh A, Pande S, Reddy P (1995) Screening methods and sources of resistance to rust and late leaf spot of groundnut. ICRISAT: Information Bulletin no. 47

  • Subrahmanyam P, Williams J, McDonald D, Gibbons R (1984) The influence of foliar diseases and their control by selective fungicides on a range of groundnut (Arachis hypogaea L.) genotypes. Ann Appl Biol 104(3):467–476

    Article  CAS  Google Scholar 

  • Sujay V, Gowda M, Pandey M, Bhat R, Khedikar Y, Nadaf H, Gautami B, Sarvamangala C, Lingaraju S, Radhakrishan T (2012) Quantitative trait locus analysis and construction of consensus genetic map for foliar disease resistance based on two recombinant inbred line populations in cultivated groundnut (Arachis hypogaea L.). Mol Breed 30(2):773–788

    Article  CAS  PubMed  Google Scholar 

  • Supek F, Bošnjak M, Škunca N, Šmuc T (2011) REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS ONE 6(7):e21800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25(9):1105–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, Van Baren MJ, Salzberg SL, Wold BJ, Pachter L (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28(5):511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tremblay A, Hosseini P, Alkharouf NW, Li S, Matthews BF (2010) Transcriptome analysis of a compatible response by Glycine max to Phakopsora pachyrhizi infection. Plant Sci 179(3):183–193

    Article  CAS  Google Scholar 

  • Tulsani NJ, Hamid R, Jacob F, Umretiya NG, Nandha AK, Tomar RS, Golakiya BA (2020) Transcriptome landscaping for gene mining and SSR marker development in Coriander (Coriandrum sativum L.). Genomics 112(2):1545–1553

    Article  CAS  PubMed  Google Scholar 

  • Untergasser A, Nijveen H, Rao X, Bisseling T, Geurts R, Leunissen JA (2007) Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res 35(2):W71–W74

    Article  PubMed  PubMed Central  Google Scholar 

  • van Loon LC, Rep M, Pieterse CM (2006) Significance of inducible defense-related proteins in infected plants. Annu Rev Phytopathol 44:135–162

    Article  CAS  PubMed  Google Scholar 

  • Varshney RK, Pandey MK, Janila P, Nigam SN, Sudini H, Gowda M, Sriswathi M, Radhakrishnan T, Manohar SS, Nagesh P (2014) Marker-assisted introgression of a QTL region to improve rust resistance in three elite and popular varieties of peanut (Arachis hypogaea L.). Theor Appl Genet 127(8):1771–1781

    Article  PubMed  PubMed Central  Google Scholar 

  • Wan L, Li B, Lei Y, Yan L, Huai D, Kang Y, Jiang H, Tan J, Liao B (2018) Transcriptomic profiling reveals pigment regulation during peanut testa development. Plant Physiol Biochem 125:116–125

    Article  CAS  PubMed  Google Scholar 

  • Ye J, Fang L, Zheng H, Zhang Y, Chen J, Zhang Z, Wang J, Li S, Li R, Bolund L (2006) WEGO: a web tool for plotting GO annotations. Nucleic Acids Res 34(2):W293–W297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu H, Wu J, Xu N, Peng M (2007) Roles of F-box proteins in plant hormone responses. Acta Biochim Biophys Sin 39(12):915–922

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Chen H, Cai T, Deng Y, Zhuang R, Zhang N, Zeng Y, Zheng Y, Tang R, Pan R (2017) Overexpression of a novel peanut NBS-LRR gene A h RRS 5 enhances disease resistance to R alstonia solanacearum in tobacco. Plant Biotechnol J 15(1):39–55

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Liang S, Duan J, Wang J, Chen S, Cheng Z, Zhang Q, Liang X, Li Y (2012) De novo assembly and characterisation of the transcriptome during seed development, and generation of genic-SSR markers in peanut (Arachis hypogaea L.). BMC Genom 13(1):90

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors are very thankful to Dr. B. A. Golakiya at the Department of Agricultural Biotechnology and Biochemistry, Junagadh for extending their support and guidance in the execution of the experiment. The authors would like to acknowledge the contribution of Mr. Manoj Parakhia for support to carry out research work and the generation of electron microscope images.

Funding

We are thankful to the Department of Agricultural Biotechnology and Biochemistry, Junagadh Agricultural University for providing peanut resistant and susceptible germplasm and laboratory facility during the experiment.

Author information

Authors and Affiliations

Authors

Contributions

VR executed laboratory and fieldwork of the project, analysed data as well as drafted the manuscript, RH assisted in data analysis as well as improving the manuscript, RST guided throughout the experiment, provided germ-plasm and laboratory facility to generate NGS data and validation using RT-qPCR, RP assisted in the improving the manuscript. SP and JK assisted in the laboratory and fieldwork of the project. PT guided throughout the experiment and helped in pathogen confirmation, NM conceptualized the project, supervised overall experiment and finalised the manuscript.

Corresponding author

Correspondence to Nasreen S. Munshi.

Ethics declarations

Conflict of interest

None of the authors have any financial or personal relationships that could inappropriately influence or bias the content of the research paper.

Electronic supplementary material

Below is the link to the electronic supplementary material.

13205_2020_2270_MOESM1_ESM.xlsx

Supplementary Table 1 A detailed information of expression profile of DEGs between GPBD-4_infected and GPBD-4_control (XLSX 53 kb)

13205_2020_2270_MOESM2_ESM.xlsx

Supplementary Table 2 A detailed information of expression profile of DEGs between JL-24_infected and JL-control (XLSX 48 kb)

13205_2020_2270_MOESM3_ESM.xlsx

Supplementary Table 3 A detailed information of expression profile of DEGs between GPBD-4_infected and JL-24_infected (XLSX 41 kb)

13205_2020_2270_MOESM4_ESM.xlsx

Supplementary Table 4 A detailed information of expression profile of DEGs between GPBD-4_control and JL-24_control (XLSX 15 kb)

Supplementary Table 5 GO classification of expressed genes in RI/RC and SI/SC by WEGO (XLS 25 kb)

Supplementary Table 6 GO classification of expressed genes by REVIGO tool. (XLSX 20 kb)

13205_2020_2270_MOESM7_ESM.xlsx

Supplementary Table7 KEGG enrichment analysis of DEGs between resistant and susceptible genotypes of Arachis hypogaea. (XLSX 11 kb)

13205_2020_2270_MOESM8_ESM.xlsx

Supplementary Table 8 List of primers with details of sequence and expression profile used for RT-qPCR validation (XLSX 11 kb)

Supplementary Table 9 SSR analysis and primers list (XLS 33 kb)

13205_2020_2270_MOESM10_ESM.pdf

Supplementary Fig. 1 GO classification of non-redundantly expressed genes among RI/RC and SI/SC. Bars show the percentages of genes matches to each GO term using a web-based tool, WEGO. Results are grouped by three main functional categories; biological process, cellular component, and molecular function (PDF 611 kb)

13205_2020_2270_MOESM11_ESM.pdf

Supplementary Fig. 2 A. category-wise distribution of genes. B. Enrichment GO analysis of DEGs performed by REVIGO to identify genes associated with defence mechanism processes. Each bubble in the scatter plot indicates a different GO term. (PDF 1391 kb)

Supplementary Fig. 3 RT-qPCR analysis of DEGs compared with the RNA-Seq data. (PDF 66 kb)

13205_2020_2270_MOESM13_ESM.pdf

Supplementary Fig. 4 SSR validation by using 15 SSR with both resistant and susceptible varieties of peanut through PCR Gel-Doc image. (PDF 141 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rathod, V., Hamid, R., Tomar, R.S. et al. Comparative RNA-Seq profiling of a resistant and susceptible peanut (Arachis hypogaea) genotypes in response to leaf rust infection caused by Puccinia arachidis. 3 Biotech 10, 284 (2020). https://doi.org/10.1007/s13205-020-02270-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-020-02270-w

Keywords

Navigation