Issue 25, 2020

Integrating chemical engineering and crystallographic texturing design strategy for the realization of practically viable lead-free sodium bismuth titanate-based incipient piezoceramics

Abstract

Off-resonance actuators utilizing lead-free incipient piezoelectric materials have recently gained extensive attention because of their exceptionally high electromechanical strain. However, current incipient piezoelectric materials have three critical challenges, namely, high driving field required for producing potentially high strains, high frequency dependence, and relatively poor fatigue resistance, which seriously restrict the implementation of lead-free incipient piezoelectrics in high-efficiency actuator applications. Herein, we demonstrate that the integration of chemical engineering and crystallographic texturing design strategies into a Bi0.5Na0.5TiO3-based system provides a highly effective approach to address these challenges. Novel 〈00l〉-oriented 0.97(0.94Bi0.5Na0.5TiO3–0.06BaTiO3)–0.03NN, as an exemplary incipient piezoelectric ceramic, was fabricated to experimentally demonstrate this design concept. A low field-driven large strain response (∼0.32% at 50 kV cm−1, ∼0.46% at 75 kV cm−1), excellent frequency dependence (∼0.42% at 65 kV cm−1, <5% variation from 0.1 Hz to 100 Hz), and superior fatigue endurance (S > 0.4%, <10% change up to 105 cycles) were simultaneously achieved in the manufactured textured ceramic, which is superior to that reported previously in most lead-free perovskite ceramics. These outstanding actuator performances can be mainly ascribed to the considerably easy ergodic relaxor to ferroelectric phase transition due to the formation of an oriented microstructure, which promotes domain switching and mobility, as confirmed by PFM measurements. This study offers a feasible and reproducible design methodology, i.e., chemical engineering and crystallographic texturing, to develop viable incipient piezoceramics and will guide future efforts in this field.

Graphical abstract: Integrating chemical engineering and crystallographic texturing design strategy for the realization of practically viable lead-free sodium bismuth titanate-based incipient piezoceramics

Supplementary files

Article information

Article type
Paper
Submitted
11 Apr 2020
Accepted
01 Jun 2020
First published
02 Jun 2020

Dalton Trans., 2020,49, 8661-8671

Integrating chemical engineering and crystallographic texturing design strategy for the realization of practically viable lead-free sodium bismuth titanate-based incipient piezoceramics

W. Bai, X. Zhao, Y. Huang, Y. Ding, L. Wang, P. Zheng, P. Li and J. Zhai, Dalton Trans., 2020, 49, 8661 DOI: 10.1039/D0DT01334J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements