Issue 25, 2020

Design of γ-AlOOH, γ-MnOOH, and α-Mn2O3 nanorods as advanced antibacterial active agents

Abstract

In the current study, γ-AlOOH, γ-MnOOH, and α-Mn2O3 nanorods (NRs) were easily synthesized and applied as advanced antibacterial materials. γ-AlOOH NRs with 20 nm width, [100] crystal plane, and 200 nm length were fabricated through a surfactant-directed solvothermal method. γ-MnOOH NRs with 20 nm width, [101] crystal direction and 500 nm length were fabricated through a hydrothermal method. The prepared γ-MnOOH NRs were calcinated (for 5 h) at 700 °C to produce α-Mn2O3 NRs with 20 nm average width and increased surface area. The NRs’ structures were confirmed through FT-IR, XRD, XPS, FESEM, and FETEM. The antibacterial activity of the NRs was studied against different Gram-negative and Gram-positive bacterial strains and yeast. The three NRs exhibited antibacterial activity against all of the used strains. Biological studies indicated that the NRs’ antimicrobial activity increased in the order of γ-MnOOH < γ-AlOOH < α-Mn2O3 NRs. The α-Mn2O3 NRs exhibited the lowest MIC value (39 μg mL−1) against B. subtilis, B. pertussis, and P. aeruginosa. The prepared NRs exhibited a higher antimicrobial potential toward Gram-positive bacteria than Gram-negative bacteria. The higher antimicrobial activity of the α-Mn2O3 NRs is highlighted based on their larger surface area and smaller diameter. Consequently, uniform NR architectures, single crystallinity, small nanoscale diameters, and more highly exposed [110] Mn-polar surfaces outwards are promising structures for α-Mn2O3 antibacterial agents. These NRs adhered firmly to the bacterial cells causing cell wrapping and morphology disruption, and microbial death. The designed NRs provide a great platform for microbial growth inhibition.

Graphical abstract: Design of γ-AlOOH, γ-MnOOH, and α-Mn2O3 nanorods as advanced antibacterial active agents

Supplementary files

Article information

Article type
Paper
Submitted
10 May 2020
Accepted
02 Jun 2020
First published
02 Jun 2020

Dalton Trans., 2020,49, 8601-8613

Design of γ-AlOOH, γ-MnOOH, and α-Mn2O3 nanorods as advanced antibacterial active agents

M. S. Selim, H. Hamouda, Z. Hao, S. Shabana and X. Chen, Dalton Trans., 2020, 49, 8601 DOI: 10.1039/D0DT01689F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements