Skip to content
BY 4.0 license Open Access Published by De Gruyter (O) May 5, 2020

Dimerization of 2-[(2-((2-aminophenyl)thio)phenyl)amino]-cyclohepta-2,4,6-trien-1-one through hydrogen bonding, C19H16N2OS

  • Anna Hanft and Crispin Lichtenberg ORCID logo EMAIL logo

Abstract

C19H16N2OS, triclinic, P1̄ (no. 2), a = 8.1510(3) Å, b = 8.8021(3) Å, c = 11.3953(5) Å, α = 72.546(2)°, β = 84.568(2)°, γ = 80.760(2)°, V = 768.86(5) Å3, Z = 2, Rgt(F) = 0.0491, wRref(F2) = 0.1494, T = 100 K.

CCDC no.: 1998662

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal:Colourless plate
Size:0.21 × 0.16 × 0.04 mm
Wavelength:Mo Kα radiation (0.71073 Å)
μ:0.22 mm−1
Diffractometer, scan mode:Bruker SMART APEX, φ and ω
θmax, completeness:28.0°, 99%
N(hkl)measured, N(hkl)unique, Rint:9366, 3619, 0.040
Criterion for Iobs, N(hkl)gt:Iobs > 2 σ(Iobs), 2625
N(param)refined:220
Programs:Bruker [1], [2], SHELX [3], [4], Mercury [5], Olex2 [6]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

AtomxyzUiso*/Ueq
C10.2649(3)0.9263(2)0.59895(19)0.0194(5)
C20.4020(3)0.8573(2)0.68386(19)0.0170(4)
C30.5422(3)0.7529(3)0.66942(19)0.0214(5)
H30.6127090.7215090.7345920.026*
C40.5961(3)0.6864(3)0.5733(2)0.0262(5)
H40.6964260.6177020.5841030.031*
C50.5225(3)0.7078(3)0.4652(2)0.0254(5)
H50.5803160.6547970.4111640.031*
C60.3712(3)0.7996(3)0.4269(2)0.0232(5)
H60.3404820.7979430.3507710.028*
C70.2605(3)0.8920(3)0.48436(19)0.0223(5)
H70.1656530.9412740.4411530.027*
C80.4611(3)0.8454(2)0.89677(19)0.0173(4)
C90.3829(2)0.7484(2)1.00027(19)0.0172(4)
C100.4672(3)0.6839(3)1.10903(19)0.0205(5)
H100.4162790.6188021.1781560.025*
C110.6259(3)0.7165(3)1.1144(2)0.0210(5)
H110.6824620.6718321.1866930.025*
C120.7015(3)0.8159(3)1.0120(2)0.0218(5)
H120.8074630.8395191.0164030.026*
C130.6186(3)0.8802(3)0.9025(2)0.0198(5)
H130.6692910.9462350.8337360.024*
C140.1056(3)0.6179(3)1.13132(19)0.0193(4)
C150.0507(2)0.7064(3)1.21541(19)0.0184(4)
C16−0.0269(3)0.6290(3)1.3276(2)0.0219(5)
H16−0.0625110.6849841.3849120.026*
C17−0.0509(3)0.4700(3)1.3539(2)0.0247(5)
H17−0.1049830.4211331.4280000.030*
C180.0044(3)0.3819(3)1.2714(2)0.0263(5)
H18−0.0097980.2742481.2904260.032*
C190.0811(3)0.4578(3)1.1605(2)0.0229(5)
H190.1170340.4004151.1041360.027*
H10.282(3)0.972(3)0.788(2)0.034(7)*
H2A0.100(3)0.914(3)1.109(3)0.041(8)*
H2B0.013(4)0.921(3)1.240(3)0.046(8)*
N10.3736(2)0.9092(2)0.78604(16)0.0194(4)
N20.0760(3)0.8639(2)1.1906(2)0.0247(4)
O10.14534(19)1.01392(19)0.63363(14)0.0271(4)
S10.18083(7)0.71275(7)0.98081(5)0.02337(18)

Comment

Aminotroponiminates (ATIs) are monoanionic ligands with applications in fields such as hydroamination and polymerization catalysis and the stabilization of low-valent main group species [7], [8], [9], [10], [11], [12]. Their potential to act as redox-active ligands has recently been demonstrated [13], [14], [15]. In the coordination chemistry of ATIs, it has been shown that not only their N,N′-binding pocket, but also their C7-ligand backbone can undergo directed bonding interactions with metal centers [16], [17], [18], [19]. Thus, ATIs can effectively act as ditopic, tridentate ligands. A strategy to further increase the denticity of this class of ligands is to connect two ATI ligands via linkers, generating so-called tropocoronands. These macrocyclic ligands have been employed for the chelation of metal atoms including Co, Ni, Cu, and Rh [20], [21], [22], [23], [24], [25], [26], [27], [28]. We became interested in tropocoronands containing unsaturated linker units. Reaction of 2,2′-thio-dianiline (1) with O-tosyltropone (2) in a 1.0:2.5 stoichiometry gave the title compound 2-((2-((2-aminophenyl)thio)phenyl)amino)-cyclohepta-2,4,6-trien-1-one (3) as the main product, which was isolated and fully characterized. The isolation of compound 3 shows that functionalization of the first N atom in 1 hampers functionalization of the second nitrogen atom in this substrate in the protocol that was employed. The asymmetric unit of the title compounds contains one formula unit of 3 (triclinic, P1̄, Z = 2, see the Figure). The three planar ring systems in 3 are twisted towards each other. The angle between the mean planes of the tropolone and the adjacent phenylene ring amounts to 68.3°. The angle between the mean planes of the two phenylene units is 76.3°. The C—N bond lengths in compound 3 suggest partial double bond character for C2—N1 [1.361(3) Å] and C15—N2 [1.374(3) Å], but not for C8—N1 [1.426(3) Å]. This demonstrates the stronger electron withdrawing character of the tropolon-2-yl unit compared to the phenylene unit in 3. The C—S bond lengths are identical within limits of error and virtually identical to those in the free 2,2′-thiodianiline substituent [1.772(2) Å] [7], [8], [9], [10], [11], [12], [29] In the solid state, the title compound is linked via two N—H⋯O hydrogen bonds, forming dimers with Ci symmetry (see the Figure). In this scenario, O1 acts as a H-bond acceptor, while H2B represents the H-bond donor. Overall, this leads to a so-called R22(22) motif, i.e. a ring strucutre formed by 22 atoms including two hydrogen bond donors and two hydrogen bond acceptors [30]. Using the C7H5ONH fragment, 15 structures of 2-(amino)tropones can be found in the Cambride Structural Database [31]. The majority of these compounds form dimers in the solid state through N—H⋯O hydrogen bonding [32], [33], [34], [35], [36], [37], [38], [39], [40], [41], [42]. In comparison to the title compound, all of these dimers form R22(10) motifs, i.e. the rings generated through hydrogen bonding are significantly smaller. In addition, two examples of hydrogen-bonded coordination polymers and two monomeric species have been reported in the literature [14], [43], [44], [45].

Source of material

Ethanol (30 mL) was added to a mixture of 2,2′-thio-dianiline (1) (157 mg, 0.726 mmol) and O-tosyltropone (2) (500 mg, 1.81 mmol). The reaction mixture was heated under reflux for 3 d. Aqueous sodium hydroxide (2 M, 20 mL) and CH2Cl2 (20 mL) were added, the aqueous phase was separated and extracted with CH2Cl2 (2 × 10 mL). The combined organic phases were dried over Na2CO3 and all volatiles were removed in vacuo. The crude reaction product was purified by column chromatography (Hexan/Ethyl acetate 5:1). The product was obtained as colourless crystals. Yield: 70 mg, 0.220 mmol, 30%.

The atom labeling used for the NMR spectroscopic characterization is the same as the atom labeling in the single crystal X-ray structure analysis.

1H-NMR (500 MHz, CDCl3): δ = 6.72 (td, 1H, 3JHH = 7.50 Hz, 4JHH = 1.29 Hz, 18-H), 6.72 (dd, 1H, 3JHH = 8.10 Hz, 4JHH = 1.35 Hz, 16-H), 6.78 (m, 1H, 5-H), 6.85 (dd, 1H, 3JHH = 10.3 Hz, 4JHH = 0.52 Hz, 3-H), 6.96 (dd, 1H, 3JHH = 7.95 Hz, 4JHH = 1.42 Hz, 10-H), 7.11 (m, 1H, 4-H), 7.14 (m, 1H, 11-H), 7.20 (m, 1H, 17-H), 7.22 (m, 1H, 12-H), 7.32 (m, 3H, 6-H, 7-H, 13-H) 7.36 (dd, 3JHH = 7.7 Hz, 4JHH = 1.5 Hz, 19-H), 8.69 (br. s, 1H, NH) ppm.

13C-NMR (125 MHz, CDCl3): δ = 110.83 (s, 3-C), 113.31 (s, 14-C), 115.66 (s, 16-C), 119.15 (s, 18-C), 124.84 (s, 5-C), 126.33 (s, 13-C), 126.63 (s, 12-C), 127.46 (s, 11-C), 128.19 (s, 10-C), 131.09 (s, 7-C), 131.38 (s, 17-C), 134.45 (s, 9-C), 135.58 (s, 8-C), 136.05 (s, 4-C), 137.42 (s, 19-C), 137.60 (s, 6-C), 149.09 (s, 15-C), 153.96 (s, 2-C), 177.17 (s, 1-C) ppm.

Anal. calc. for C19H16N2OS (320.41 g/mol): C, 71.22; H, 5.03; N, 8.74; found: C, 70.99; H, 4.95; N, 8.61.

m. p.: 175 °C.

Experimental details

The Uiso values of H atoms were set to 1.2 * Ueq of the parent atoms. Coordinates of hydrogen atoms bound to N were refined without any constraints or restraints. All other hydrogen atoms were refined with riding coordinates.

Acknowledgements

The authors thank Prof. Holger Braunschweig for constant support and the Fonds der Chemischen Industrie (Liebig scholarship to C. L.), the DFG, and the University of Würzburg for generous financial support. This publication was supported by the Open Access Publication Fund of the University of Würzburg.

References

1. Bruker. APEX2 ver. 2014.9. Bruker AXS GmbH, Karlsruhe, Germany (2014).Search in Google Scholar

2. Bruker. SAINT+ ver. 8.38A. Bruker AXS GmbH, Karlsruhe, Germany (2019).Search in Google Scholar

3. Sheldrick, G.: SHELXT – Integrated space-group and crystal-structure determination. Acta Crystallogr. A71 (2015) 3–8.10.1107/S2053273314026370Search in Google Scholar

4. Sheldrick, G.: Crystal structure refinement with SHELXL. Acta Crystallogr. A64 (2008) 112–122.10.1107/S0108767307043930Search in Google Scholar

5. Macrae, C. F.; Sovago, I.; Cottrell, S. J.; Galek, P. T. A.; McCabe, P.; Pidcock, E.; Platings, M.; Shields, G. P.; Stevens, J. S.; Towler, M.; Wood, P. A.: Mercury 4.0: from visualization to analysis, design and prediction. J. Appl. Crystallogr. 53 (2020) 226–235.10.1107/S1600576719014092Search in Google Scholar

6. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H.: OLEX2: a complete structrue solution, refinement and analysis program. J. Appl. Crystallogr. 42 (2009) 339–241.10.1107/S0021889808042726Search in Google Scholar

7. Hanft, A.; Lichtenberg, C.: New perspectives for aminotroponiminates: coordination chemistry, redox behavior, cooperativity, and catalysis. Eur. J. Inorg. Chem. 2018 (2018) 3361–3373.10.1002/ejic.201800465Search in Google Scholar

8. Roesky, P. W.: The coordination chemistry of aminotroponiminates. Chem. Soc. Rev. 29 (2000) 335–345.10.1039/a906763iSearch in Google Scholar

9. Roesky, P. W.: Bulky amido ligands in rare earth chemistry – syntheses, structures, and catalysis. Z. Anorg. Allg. Chem. 629 (2003) 1881–1894.10.1002/zaac.200300240Search in Google Scholar

10. Dias, H. V. R.; Wang, Z.; Jin, W.: Aminotroponiminato complexes of silicon, germanium, tin and lead. Coord. Chem. Rev. 176 (1998) 67–86.10.1016/S0010-8545(98)00112-XSearch in Google Scholar

11. Kuehl, O.: N-heterocyclic germylenes and related compounds. Coord. Chem. Rev. 248 (2004) 411–427.10.1016/j.ccr.2003.12.004Search in Google Scholar

12. Jenter, J.; Luhl, A.; Roesky, P. W.; Blechert, S.: Aminotroponiminate zinc complexes as catalysts for the intramolecular hydroamination. J. Organomet. Chem. 696 (2011) 406–418.10.1016/j.jorganchem.2010.10.017Search in Google Scholar

13. Lichtenberg, C.; Krummenacher, I.: Aminotroponiminates as tunable, redox-active ligands: reversible single electron transfer and reductive dimerisation. Chem. Commun. 52 (2016) 10044–10046.10.1039/C6CC05762DSearch in Google Scholar PubMed

14. Hanft, A.; Lichtenberg, C.: Aminotroponiminates: ligand-centred, reversible redox events under oxidative conditions in sodium and bismuth complexes: Dalton Trans. 47 (2018) 10578–10589.10.1039/C8DT01019FSearch in Google Scholar

15. Hanft, A.; Krummenacher, I.; Lichtenberg, C.: Alkali-metal aminotroponiminates: selectivities and equilibria in reversible radical coupling of delocalized π-electron systems. Chem. Eur. J. 25 (2019) 11883–11891.10.1002/chem.201901962Search in Google Scholar PubMed

16. Lichtenberg, C.: Aminotroponiminates: alkali metal compounds reveal unprecedented coordination modes. Organometallics 35 (2016) 874–902.10.1021/acs.organomet.6b00042Search in Google Scholar

17. Hanft, A.; Lichtenberg, C.: Rationalizing the effect of ligand substitution patterns on coordination and reactivity of alkali metal aminotroponiminates. Organometallics 37 (2018) 1781–1787.10.1021/acs.organomet.8b00208Search in Google Scholar

18. Hanft, A.; Jürgensen, M.; Bertermann, R.; Lichtenberg, C.: Sodium aminotroponiminates: ligand-induced disproportionation, mixed-metal compounds, and exceptional activity in polymerization catalysis. ChemCatChem 10 (2018) 4018–4027.10.1002/cctc.201800580Search in Google Scholar

19. Pittracher, M.; Frisch, U.; Kopacka, H.; Wurst, K.; Müller, T.; Oehninger, L.; Ott, I.; Wuttke, E.; Scheerer, S.; Winter, R. F.; Bildstein, B.: π-Complexes of tropolone and its N-derivatives: ambidentate [O,O]/[N,O]/[N,N]-cycloheptatrienyl pentamethylcyclopentadienyl ruthenium sandwich complexes. Organometallics 33 (2014) 1630–1643.10.1021/om401200tSearch in Google Scholar

20. Jaynes, S.; Doerrer, L. H.; Liu, S.; Lippard, S. J.: Synthesis, tuning of the stereochemistry, and physical properties of cobalt(II) tropocoronand complexes. Inorg. Chem. 34 (1995) 5735–5744.10.1021/ic00127a010Search in Google Scholar

21. Davis, M.; Roberts, M. M.; Zask, A.; Nakanishi, K.; Nozoe, T.; Lippard, S. J.: Stereochemical and electronic spin state tuning of the metal center in the nickel(II)tropocoronands. J. Am. Chem. Soc. 107 (1985) 3864–3870.10.1021/ja00299a018Search in Google Scholar

22. Davis, M.; Zask, A.; Nakanishi, K.; Lippard, S. J.: Copper(II) tropocoronands: synthesis, structure, and properties of mononuclear complexes. Inorg. Chem. 24 (1985) 3737–3743.10.1021/ic00217a009Search in Google Scholar

23. Villacorte, M.; Gibson, D.; Williams, I. D.; Lippard, S. J.: Dicopper(I)tropocoronands: synthesis, X-ray crystal structure, and spectral properties of neutral binuclear copper(I) complexes bridged by symmetrically substituted alkynes. J. Am. Chem. Soc. 107 (1985) 6732–6734.10.1021/ja00309a064Search in Google Scholar

24. Kozhukh, J.; Minier, M. A.; Lippard, S. J.: Synthesis and characterization of mononuclear, pseudotetrahedral cobalt(III) compounds. Inorg. Chem. 54 (2015) 418–424.10.1021/ic5009279Search in Google Scholar PubMed PubMed Central

25. Hopmann, K. H.; Conradie, J.; Zangen, E.; Tonzetich, Z. J.; Lippard, S. J.: Singlet-triplet gaps of cobalt nitrosyls: insights from tropocoronand complexes. Inorg. Chem. 54 (2015) 7362–7367.10.1021/acs.inorgchem.5b00901Search in Google Scholar PubMed

26. Davis, M.; Lippard, S. J.: Tropocoronands as binucleating ligands. synthesis, structure, and properties of a (μ-acetato)(μ-methoxo)dicopper(II) derivative. Inorg. Chem. 24 (1985) 3688–3691.10.1021/ic00216a043Search in Google Scholar

27. Jaynes, S.; Ren, T.; Masschelein, A.; Lippard, S. J.: Stereochemical control of reactivity in Co(III) alkyl complexes of the tropocoronand ligand system. J. Am. Chem. Soc. 115 (1993) 5589–5599.10.1021/ja00066a027Search in Google Scholar

28. Shindo, K.; Wakabayashi, H.; Kurihara, T.; Zhang, L.-C.; Ebata, K.; Sakurai, H.; Nozoe, T.: Synthesis and crystal structure of tristropocryptands. J. Chin. Chem. Soc. 50 (2003) 47–50.10.1002/jccs.200300006Search in Google Scholar

29. Yuan, Y.-Q.; Guo, S.-R.; Wang, L.-J.: Crystal structure of 2,2′-diaminodiphenyl sulfide, C12H12N2S. Z. Kristallogr. NCS 223 (2008) 507–508.10.1524/ncrs.2008.0223Search in Google Scholar

30. Etter, M. C.; MacDonald, J. C.; Bernstein, J.: Graph-set analysis of hydrogen-bond patterns in organic crystals. Acta Crystallogr. B46 (1990) 256–262.10.1107/S0108768189012929Search in Google Scholar PubMed

31. Groom, C. R.; Bruno, I. J.; Lightfoot, M. P.; Ward, S. C.: The Cambridge Structural Database. Acta Crystallogr. B72 (2016) 171–179.10.1016/B978-0-12-409547-2.02529-4Search in Google Scholar

32. Roesky, P. W.; Bürgstein, M. R.: Bridged aminotroponiminate complexes of the lanthanides. Inorg. Chem. 38 (1999) 5629–5632. (LIGVOM).10.1021/ic990533cSearch in Google Scholar PubMed

33. Dwivedi, A. D.; Binnani, C.; Tyagi, D.; Rawat, K. S.; Li, P.-Z.; Zhao, Y.; Mobin, S. M.; Pathak, B.; Singh, S. K.: Troponate/aminotroponate ruthenium-arene complexes: synthesis, structure, and ligand-tuned mechanistic pathway for direct C-H bond arylation with aryl chlorides in water. Inorg. Chem. 55 (2016) 6739–6749. (OTIMUB).10.1021/acs.inorgchem.6b01028Search in Google Scholar PubMed

34. Barret, M. C.; Bhatia, P. H.; Kociok-Köhn, G.; Molloy, K. C.: New copper(II) 2-(alkylamino)troponates. Transition Met. Chem. 39 (2014) 543–551. (NOPRUH).10.1007/s11243-014-9830-0Search in Google Scholar

35. Nishinaga, T.; Aono, T.; Isomura, E.; Watanabe, S.; Miyake, Y.; Miyazaki, A.; Enoki, T.; Miyasaka, H.; Otani, H.; Iyoda, M.: Structural, electronic and magnetic properties of Cu(II) complexes of 2-substituted tropones bearing a ferrocenyl group at 5-position. Dalton Trans. 39 (2010) 2293–2300. (FULHIE).10.1039/b912255aSearch in Google Scholar

36. Hicks, F. A.; Brookhart, M.: A highly active anilinotropone-based neutral nickel(II) catalyst for ethylene polymerization. Organometallics 20 (2001) 3217–3219. (MIXLOU).10.1021/om010211sSearch in Google Scholar

37. Steyl, G.: 2-(4-Flouroanilino)tropone. Acta Crystallogr. E63 (2007) o4353. (SIMQAH).10.1107/S1600536807050271Search in Google Scholar

38. Ito, Y.; Amimoto, K.; Kawato, T.: Prototropic tautomerism and solid-state photochromism of N-phenyl-2-aminotropones. Dyes Pigments 89 (2011) 319–323. (SAPLOM).10.1016/j.dyepig.2010.06.001Search in Google Scholar

39. Kubo, K.; Matsumoto, T.; Ideta, K.; Mori, A.: Crystal structures of 3-methylpyrrolo[2,3-b]tropone and its copper(II) complex. Heterocycles 90 (2015) 104–107. (KUHSIR).10.3987/COM-14-S(K)17Search in Google Scholar

40. Kubo, K.; Tsujimoto, T.; Mori, A.: 3-Phenylpyrrolo[2,3-b]tropone. Acta Crystallogr. E57 (2001) o225–o227. (HUFTUX).10.1107/S1600536801002021Search in Google Scholar

41. Kubo, K.; Tsujimoto, T.; Kato, N.; Mori, A.: 2,3-Cyclohexanopyrrolo[2,3-b]tropone. Acta Crystallogr. E57 (2001) o370–o371. (QIBMUJ).10.1107/S1600536801005001Search in Google Scholar

42. Wahlström, N.; Stensland, B.; Bergman, J.: Synthesis of the marine alkaloid caulersin. Tetrahedron 60 (2004) 2147–2153. (ITIJIE).10.1016/j.tet.2003.12.046Search in Google Scholar

43. Jansen van Vuuren, L.; Visser, H. G.; Schutte-Smith, M.: Crystal structure of 2-(methylamino)tropone. Acta Crystallogr. E75 (2019) 1128–1132. (WOLQUM).10.1107/S2056989019009502Search in Google Scholar PubMed PubMed Central

44. Huczyński, A.; Majcher, U.; Maj, E.; Wietrzyk, J.; Janczak, J.; Moshari, M.; Tuszynski, J. A.; Bartl, F.: Synthesis, antiproliferative activity and molecular docking of Colchicine derivatives. Bioorg. Chem. 64 (2016) 103–112. (XAJCOD).10.1016/j.bioorg.2016.01.002Search in Google Scholar PubMed

45. Siwatch, R. K.; Kundu, S.; Kumar, D.; Nagendran, S.: Bulky aminotroponiminate-stabilized germylene monochloride and its alkyne derivatives. Organometallics 30 (2011) 1998–2005. (OZINUH).10.1021/om200035zSearch in Google Scholar

Received: 2020-03-05
Accepted: 2020-04-23
Published Online: 2020-05-05
Published in Print: 2020-06-25

©2020 Anna Hanft et al., published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 Public License.

Downloaded on 25.4.2024 from https://www.degruyter.com/document/doi/10.1515/ncrs-2020-0124/html
Scroll to top button