Skip to main content
Log in

Steam Reforming of n-Butane in Membrane Reactor with Industrial Nickel Catalyst and Foil Made of Pd-Ru Alloy

  • Published:
Membranes and Membrane Technologies Aims and scope Submit manuscript

Abstract

Steam reforming of n-butane has been studied in a membrane reactor at temperatures of 673–823 K, feed hourly space velocities of 1800 and 3600 h–1, and steam/butane ratios of 3, 5 and 7. Under selected conditions, the steam conversion is accompanied by the formation of carbon deposits, whose yield decreases with increasing steam excess. However, with an increase in steam excess, its negative effect on H2 recovery through the membrane increases. Comparative experiments with the “non-membrane” reaction at a constant steam/butane ratio equal to 5 have shown that butane conversion to the target products increases in the membrane reactor and the rate of carbon deposits formation decreases. When replacing the sweep gas by the vacuum conditions in the permeate side, there is a further decrease in the rate of carbon deposits formation and an increase in the butane conversion in the main reaction. With an increase in feed hourly space velocity from 1800 to 3600 h–1, the rate of carbon deposits formation and its dependence on temperature increase. At an hourly space velocity of 1800 h–1, the rate of formation of carbon deposits is two to three times lower and varies slightly with temperature. Under these conditions, the butane conversion is close to 100%; about 80% of H2 formed is recovered from the reaction mixture, and at vacuum conditions in the permeate side, the H2 recovery is 95%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. N. Laosiripojana, W. Sutthisripok, S. Charojrochkul, and S. Assabumrungrat, Fuel 90, 136 (2011).

    Article  CAS  Google Scholar 

  2. C. N. Avila-Neto, K. D. Oliveira, K. F. Oliveira, M. M. Aline, A. M. M. Arouca, R. A. R. Ferreira, and C. E. Hori, Appl. Catal., A 550, 184 (2018).

  3. L. Zhang, X. Wang, B. Tan, and U. S. Ozkan, J. Mol. Catal. A: Chem. 297, 26 (2009).

    Article  CAS  Google Scholar 

  4. K. M. Kim, B. S. Kwak, N. K. Park, T. J. Lee, S. T. Lee, and M. J. Kang, Ind. Eng. Chem. 46, 324 (2017).

    Article  CAS  Google Scholar 

  5. E. C. Faria, R. C. Rabelo-Neto, R. C. Colman, R. A. R. Ferreira, C. E. Hori, and F. B. Noronha, Catal. Lett. 146, 2229 (2016).

    Article  CAS  Google Scholar 

  6. N. Laosiripojana, W. Sangtongkitcharoen, and S. Assabumrungrat, Fuel, 323 (2006).

  7. V. M. Gryaznov, Dokl. Akad. Nauk SSSR 189, 794 (1969).

    CAS  Google Scholar 

  8. V. M. Gryaznov, Platinum Met. Rev. 30, 68 (1986).

    CAS  Google Scholar 

  9. A. P. Mishchenko, V. M. Gryaznov, and M. E. Sarylova, Russ. Chem. Bull., Int. Ed. 40, 1149 (1991).

    Google Scholar 

  10. V. M. Gryaznov, M. M. Ermilova, N. V. Orekhova, and E. V. Skakunova, Russ. Chem. Bull., Int. Ed. 37, 637 (1988).

    Article  Google Scholar 

  11. V. M. Gryaznov, E. V. Skakunova, and M. M. Ermilova, Russ. Chem. Bull., Int. Ed. 37, 858 (1988).

    Google Scholar 

  12. V. M. Gryaznov, Sep. Purif. Rev. 29, 171 (2000).

    Article  CAS  Google Scholar 

  13. E. Drioli, A. I. Stankievicz, and F. Macedonian, J. Membr. Sci. 380, 1 (2011).

    Article  CAS  Google Scholar 

  14. A. A. Lytkina, N. V. Orekhova, and A. B. Yaroslavtsev, Petr. Chem. 58, 911 (2018).

    Article  CAS  Google Scholar 

  15. E. Yu. Mironova, M. M. Ermilova, N. V. Orekhova, D. N. Muraviev, and A. B. Yaroslavtsev, Catal. Today 236, 64 (2014).

    Article  CAS  Google Scholar 

  16. V. V. Volkov, E. G. Novitskii, G. A. Dibrov, P. V. Samokhin, M. A. Kipnis, and A. B. Yaroslavtsev, Catal. Today 193, 31 (2012).

    Article  CAS  Google Scholar 

  17. L. P. Didenko, V. I. Savchenko, L. A. Sementsova, P. E. Chizhov, L. A. Bykov, Petr. Chem. 53, 27 (2013).

    Article  CAS  Google Scholar 

  18. L. P. Didenko, V. I. Savchenko, L. A. Sementsova, and P. E. Chizhov, Petr. Chem. 56, 459 (2016).

    Article  CAS  Google Scholar 

  19. N. V. Orekhova, L. M. Kustov, A. V. Kucherov, E. D. Finashina, M. M. Ermilova, and A. B. Yaroslavtsev, Nanotechnol. Russ, 7, 560 (2012).

    Article  Google Scholar 

  20. Y. Guo, G. Lu, Y. Wang, and R. Wang, Sep. Purif. Technol. 32, 271 (2003).

    Article  CAS  Google Scholar 

  21. L. M. Neal, S. Yusuf, J. A. Sofranko, and F. Li, Energy Technol. 4, 1200 (2016).

    Article  CAS  Google Scholar 

  22. M. L. Rodriguez, D. Ardissone, E. Heracleous, A. Lemo-nidon, E. Lopez, M. N. Pedernera, and D. O. Borio, Catal. Today 157, 303 (2010).

    Article  CAS  Google Scholar 

  23. M. Ermilova, A. Kucherov, N. Orekhova, E. Finashina, L. Kustov, and A. Yaroslavtsev, Chem. Eng. Process: Process Intensif. 126, 150 (2018).

    Article  CAS  Google Scholar 

  24. M. V. Tsodikov, A. S. Fedotov, D. O. Antonov, V. I. Uvarov, and F. C. Luck, Int. J. Hydrogen Energy 41, 2424 (2016).

    Article  CAS  Google Scholar 

  25. A. S. Fedotov, D. O. Antonov, O. V. Bukhtenko, V. I. Uvarov, and M. V. Tsodikov, Int. J. Hydrogen Energy 42, 24 131 (2017).

    Article  CAS  Google Scholar 

  26. M. V. Tsodikov, A. S. Fedotov, D. O. Antonov, V. I. Uvarov, and S. N. Khadzhiev, RF Patent 2638350, Byull. Izobret. No. 2 (2017).

  27. A. Basile, S. Campanari, G. Manzolini, A. Iulianelli, T. Longo, S. Liguori, M. De Falco, and V. Piemonte, Int. J. Hydrogen Energy 36 (2), 1531 (2011).

    Article  CAS  Google Scholar 

  28. Y. Shirasaki, T. Tsuneki, Y. Ota, I. Yasuda, S. Tachibana, H. Nakajima, K. Kobayashi, Int. J. Hydrogen Energy 34, 4482 (2009).

    Article  CAS  Google Scholar 

  29. K. Takao, I. Yoichi, I. Takaya, Y. Hisataka, T. Hiroyuki, H. Hideaki, T. Yasuhiro, and I. Masaya, Int. J. Hydrogen Energy 38, 6079 (2013).

    Article  CAS  Google Scholar 

  30. T. Boeltken, A. Wunsch, T. Gietzelt, P. Pfeifer, and R. Dittmeyer, Int. J. Hydrogen Energy 39, 18 058 (2014).

    Article  CAS  Google Scholar 

  31. M. Maki, H. Mitoki, and I. Tatsumi, Int. J. Hydrogen Energy 38, 6673 (2013).

    Article  CAS  Google Scholar 

  32. Panyuan Li, Zhi Wang, Zhihua Qiao, Yanni Liu, Xiaochang Cao, Wen Li, Jixiao Wang, and Shichang Wang, J. Membr. Sci. 495, 130 (2015).

    Article  CAS  Google Scholar 

  33. G. Burkhanov, N. Gorina, N. Kolchugina, and N. Roshan, Platinum Met. Rev. 55, 3 (2011).

    Article  CAS  Google Scholar 

  34. L. P. Didenko, V. I. Savchenko, L. A. Sementsova, and L. A. Bykov, Int. J. Hydrogen Energy 41, 307 (2016).

    Article  CAS  Google Scholar 

  35. Y. S. Cheng and K. L. Yeung, J. Membr. Sci. 182, 195 (2001).

    Article  CAS  Google Scholar 

  36. L. P. Didenko, L. A. Sementsova, P. E. Chizhov, V. N. Babak, and V. I. Savchenko, Russ. Chem. Bull., Int. Ed. 6, 1997 (2016).

    Google Scholar 

  37. L. P. Didenko, L. A. Sementsova, P. E. Chizhov, and T. V. Dorofeeva, Petr. Chem. 59, 394 (2019).

    Article  CAS  Google Scholar 

  38. Kh. Kramers and K. Vestertern, Chemical Reactors (Khimiya, Moscow, 1967) [in Russian].

    Google Scholar 

  39. V. N. Babak, L. P. Didenko, and Yu. P. Kvurt, in Proceedings of the International Conference on Mathematical Methods in Engineering and Technology MMTT-32, St. Petersburg,2019 [in Russian].

  40. Y.-M. Lin, S.-L. Liu, C.-H. Chuang, and Y.-T. Chu, Catal. Today 82, 127 (2003).

    Article  CAS  Google Scholar 

  41. F. Gallucci, A. Comite, G. Capannelli, and A. Basile, Ind. Eng. Chem. Res. 45, 2994 (2006).

    Article  CAS  Google Scholar 

  42. M. Falko and Paola L. Marrelli, Int. J. Hydrogen Energy 32, 2094 (2007).

    Article  CAS  Google Scholar 

  43. А. Iulianelli, G. Manzolini, M. De Falco, S. Campanari, T. Longo, S. Liguori, and A. Basele, Int. J. Hydrogen Energy 35, 11 514 (2010).

    Article  CAS  Google Scholar 

  44. H. Butcher, C. J. E. Quenzel, L. Breziner, J. Mettes, B. A. Wilhite, and P. Bossar, Int. J. Hydrogen Energy, 111 (2014).

  45. X. Wang and R. J. Gorte, Catal. Lett. 73, 15 (2001).

    Article  CAS  Google Scholar 

  46. A. Igarashi, T. Ohtaka, and S. Motoki, Catal. Lett. 13, 189 (1991).

    Article  Google Scholar 

  47. M. M. Zyryanova, P. V. Snytnikov, Yu. I. Amosov, V. D. Belyaev, and V. A. Sobyanin, Fuel 108, 282 (2013).

    Article  CAS  Google Scholar 

  48. M. M. Zyryanova, S. D. Badmaev, V. D. Belyaev, Yu. I. Amosov, P. V. Snytnikov, V. A. Kirillov, and V. A. Sobyanin, Catal. Industry 5, 312 (2013).

    Article  Google Scholar 

  49. M. M. Zyryanova, P. V. Snytnikov, A. B. Shigarov, V. D. Belyaev, V. A. Kirillov, and V. A. Sobyanin, Fuel 135, 76 (2014).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was carried out as part of the Program of Fundamental Scientific Research of the State Academies of Sciences for 2013–2020, no. 0089-2014-0032.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. P. Didenko.

Additional information

Translated by V. Avdeeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Didenko, L.P., Sementsova, L.A., Babak, V.N. et al. Steam Reforming of n-Butane in Membrane Reactor with Industrial Nickel Catalyst and Foil Made of Pd-Ru Alloy. Membr. Membr. Technol. 2, 85–97 (2020). https://doi.org/10.1134/S2517751620020055

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2517751620020055

Keywords:

Navigation