Skip to main content
Log in

Creation of Ion-Selective Membranes from Polyethylene Terephthalate Films Irradiated with Heavy Ions: Critical Parameters of the Process

  • Published:
Membranes and Membrane Technologies Aims and scope Submit manuscript

Abstract

A combination of a long exposure to ultraviolet (UV) radiation and the extraction of radiolysis and photolysis products from tracks makes it possible to create ion-selective membranes from polyethylene terephthalate (PET) films irradiated with heavy ions. These membranes exhibit high selectivity for singly charged cations and high transport characteristics in the electrodialysis mode. The aim of this study is to analyze the mechanisms of the transformation of latent tracks into a system of through pores of the subnanometer range in more detail. Polyethylene terephthalate films are irradiated with accelerated Xe and Bi ions with energy losses in the polymer of 11 and 18 keV/nm, respectively. The evolution of the free volume and the accumulation of carboxyl groups in the irradiated films at different stages of the treatment are studied using gravimetry, IR and UV spectroscopy, conductometry, and electron microscopy methods. It is found that the properties of the resulting membranes depend on several critical parameters, which include, in addition to temperature during extraction, the energy loss of the bombarding ion, the pH of the solution used for extraction, and ion fluence. Dramatic changes in the membrane properties are observed at ion fluences at which individual tracks begin to overlap.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. V. V. Berezkin, A. N. Nechaev, S. V. Fomichev, B. V. Mchedlishvili, and N. I. Zhitaryuk, Colloid J. USSR, Plenum Publishing, 53, 292 (1991).

  2. A. E. Yaroshchuk, Adv. Colloid Interface Sci. 60, 1 (1995).

    Article  CAS  Google Scholar 

  3. P. Yu. Apel’ and L. I. Kravets, Khim. Vys. Energ. 25, 138 (1991).

    Google Scholar 

  4. P. Yu. Apel’ and L. I. Kravets, Khim. Vys. Energ. 26, 295 (1992).

    Google Scholar 

  5. K. Schaupert, D. Albrecht, P. Armbruster, and R. Spohr, Appl. Phys. 44, 347 (1987).

    Article  Google Scholar 

  6. P. Yu. Apel, N. Angert, W. Bruechle, H. Hermann, U. Kampschulte, P. Klein, L. I. Kravets, Yu. Ts. Oganessian, G. Remmert, R. Spohr, T. Steckenreiter, C. Trautmann, and J. Vetter, Nucl. Instrum. Methods Phys. Res. 86, 325 (1994).

    Article  CAS  Google Scholar 

  7. M. Esser, P. Yu. Apel, W. Bruechle, J. Furmann, B. Heinrich, G. Remmert, R. Spohr, C. Trautmann, and J. Vetter, Nucl. Instrum. Methods Phys. Res. 91, 157 (1994).

    Article  CAS  Google Scholar 

  8. N. Betz, Nucl. Instrum. Methods in Phys. Res. 55, 105 (1995).

    Google Scholar 

  9. Y. Kimura, J. Chen, M. Asano, Y. Maekawa, R. Katakai, and M. Yoshida, Nucl. Instrum. Methods in Phys. Res. 263, 463 (2007).

    Article  CAS  Google Scholar 

  10. Heavy Ion Physics: VI Intern. School-Seminar, Dubna, Russia (22–27 September, 1997), Ed. by Fink D., Ghosh S., Hirata K., Klett R., Dwivedi K.K., Vacik J., and Hnatowicz V. (World Scientific, Singapore, 1998).

    Google Scholar 

  11. D. Fink, A. Petrov, M. Muller, T. Asmus, V. Hnatowicz, J. Vacik, and J. Cervena, Surf. Coat. Technol. 158–159, 228 (2002).

    Article  Google Scholar 

  12. P. Y. Apel, V. V. Bashevoy, I. V. Blonskaya, N. I. Lizunov, O. L. Orelovitch, and C. Trautmann, Phys. Chem. Chem. Phys. 18, 25 421 (2016).

    Article  CAS  Google Scholar 

  13. Q. Wen, D. Yan, F. Liu, M. Wang, Y. Ling, P. Wang, P. Kluth, D. Schauries, C. Trautmann, P. Apel, W. Guo, G. Xiao, J. Liu, J. Xue, Y. Wang, Adv. Funct. Mater 26, 5796 (2016).

    Article  CAS  Google Scholar 

  14. P. Wang, M. Wang, F. Liu, S. Ding, X. Wang, G. Du, J. Liu, P. Apel, P. Kluth, C. Trautmann, and Y. Wang, Nat. Commun. 9, 569 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. P. Wang, X. Wang, Y. Ling, M. Wang, S. Ding, W. Shen, Z. Wang, Y. Wang, F. Liu, Radiat. Meas. 119, 80 (2018).

    Article  CAS  Google Scholar 

  16. P. Yu. Apel, O. V. Bobreshova, A. V. Volkov, V. V. Volkov, V. V. Nikonenko, I. A. Stenina, A. N. Filippov, Yu. P. Yampolskii, and A. B. Yaroslavtsev, Membr. Membr. Technol. 1, 45 (2019).

    Article  Google Scholar 

  17. S. E. Kesler, P. W. Gruber, P. A. Medina, G. A. Keoleian, M. P. Everson, and T. J. Wallington, Ore Geol. Rev. 48, 55 (2012).

    Article  Google Scholar 

  18. T. Hoshino, Fusion Eng. Des. 88, 2956 (2013).

    Article  CAS  Google Scholar 

  19. A. Somrani, A. H. Hamzaoui, and M. Pontie, Desalination 317, 184 (2013).

    Article  CAS  Google Scholar 

  20. X.-Y. Nie, S.-Y. Sun, Z. Sun, X. Song, J.-G. Yu, Desalination 403, 128 (2017).

    Article  CAS  Google Scholar 

  21. J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids (Pergamon: New York, 1985). http://www.srim.org.

    Google Scholar 

  22. P. Yu. Apel, A. Schulz, R. Spohr, C. Trautmann, V. Vutsadakis, Nucl. Instrum. Methods Phys. Res. 146, 468 (1998).

    Article  CAS  Google Scholar 

  23. N. Berezina, N. Gnusin, O. Dyomina, and S. Timofeev, J. Membr. Sci. 86, 207 (1994).

    Article  CAS  Google Scholar 

  24. O. L. Orelovitch, P. Yu. Apel, and B. Sartowska, J. Microscopy 224, 100 (2006).

    Article  CAS  Google Scholar 

  25. S. Abu Saleh and Y. Eyal, Appl. Phys. Lett. 85, 2529 (2004).

    Article  CAS  Google Scholar 

  26. S. Abu Saleh and Y. Eyal, Nucl. Instrum. Methods Phys. Res. B. 236, 81 (2005).

    Article  CAS  Google Scholar 

  27. D. K. Avasthi, J. P. Singh, A. Biswas, and S. K. Bose, Nucl. Instrum. Methods Phys. Res. 146, 504 (1998).

    Article  CAS  Google Scholar 

  28. T. Grossetete, A. Rivaton, J. L. Gardette, C. E. Hoyle, M. Ziemer, D. R. Fagerburg, and H. Clauberg, Polymer 41, 3541 (2000).

    Article  CAS  Google Scholar 

  29. R. L. Addleman and V. I. J. Zichy, Polymer 13, 391 (1972).

    Article  CAS  Google Scholar 

  30. T. Steckenreiter, E. Balanzat, H. Fuess, and C. Trautmann, Nucl. Instrum. Methods Phys. Res. 131, 159 (1997).

    Article  CAS  Google Scholar 

  31. X. Fang and G. Mark, and C. von Sonntag, Ultrason. Sonochem. 3, 57 (1996).

    Article  CAS  Google Scholar 

  32. S. Krishnan, S. B. Mitra, P. M. Russell, and G. Benz, ACS Symp. Ser. 287, 389.

  33. R. Buchalla and T. H. Begley, Radiat. Phys. Chem. 75, 129 (2006).

    Article  CAS  Google Scholar 

  34. A. I. Vilensky, D. L. Zagorsky, V. Ya. Kabanov, and B. V. Mchedlishvili, Radiat. Meas. 36, 131 (2003).

    Article  CAS  Google Scholar 

  35. A. Shafaei, M. Nikazar, and M. Arami, Desalination 252, 8 (2010).

    Article  CAS  Google Scholar 

  36. D. Doub and J. M. Vandenbelt, J. Am. Chem. Soc. 69, 2714 (1947).

    Article  CAS  Google Scholar 

  37. Chemist’s Handbook, Ed. by Nikol’skii B.P. (Khimiya, Moscow, 1964) [in Russian].

    Google Scholar 

  38. C. Sanborn, J. V. Chacko, M. Digman, and S. Ardo, Chem. 5, 1648 (2019).

    Article  CAS  Google Scholar 

  39. Membranes and Membrane Technologies, Ed. by Yaroslavtsev A.B. (Nauchnyi Mir, Moscow, 2013) [in Russian].

    Google Scholar 

  40. V. V. Berezkin, O. A. Kiseleva, A. N. Nechaev, V. D. Sobolev, N. V. Churaev, Kolloid. Zh. 56, 319 (1994).

    CAS  Google Scholar 

  41. H. Chang, J. M. Schultz, and R. M. Gohil, J. Macromol. Sci. 32, 99 (1994).

    Article  Google Scholar 

  42. F. Dinelli, H. E. Assender, K. Kirov, and O. V. Kolosov, Polymer 41, 4285 (2000).

    Article  CAS  Google Scholar 

  43. D. I. Svergun, A. B. Semenyuk, L. Yu. Mogilevskii, V. V. Berezkin, A. N. Nechaev, and B. V. Mchedlishvili, Kolloidn. Zh. 53, 143 (1991).

    CAS  Google Scholar 

  44. V. S. Nichka, S. A. Mareev, M. V. Porozhnyy, S. A. Shkirskaya, E. Yu. Safronova, N. D. Pismenskaya, and V. V. Nikonenko, Membr. Membr. Techn. 1, 190 (2019).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank N.S. Kirilkin for his assistance in irradiating the samples with Bi ions. P.Yu.A. thanks Feng Liu for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Yu. Apel.

Additional information

Translated by M. Timoshinina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Apel, P.Y., Blonskaya, I.V., Ivanov, O.M. et al. Creation of Ion-Selective Membranes from Polyethylene Terephthalate Films Irradiated with Heavy Ions: Critical Parameters of the Process. Membr. Membr. Technol. 2, 98–108 (2020). https://doi.org/10.1134/S251775162002002X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S251775162002002X

Keywords:

Navigation