Skip to main content
Log in

Perfluorinated Proton-Conducting Membrane Composites with Functionalized Nanodiamonds

  • Published:
Membranes and Membrane Technologies Aims and scope Submit manuscript

Abstract

Composite proton-conducting membranes based on perfluorinated short side chain polymers modified with nanodiamonds having a hydrophilic surface owing to grafted carboxyl groups have been produced. Membrane films are prepared by precipitating the polymer from a dimethylformamide solution with introduced nanodiamonds. The proposed method for synthesizing the composites provides a high mechanical strength and an increase in the proton conductivity of the material with an increase in temperature in a 20–50°С range at rather low diamond concentrations (0.25–1 wt %). These features are important for using the composites in fuel cells at high temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. P. Yu. Apel, O. V. Bobreshova, A. V. Volkov, V. V. Volkov, V. V. Nikonenko, I. A. Stenina, A. N. Filippov, Yu. P. Yampolskii, and A. B. Yaroslavtsev, Membr. Membr. Technol. 1, 45 (2019).

    Article  Google Scholar 

  2. Yu. V. Kulvelis, S. S. Ivanchev, V. T. Lebedev, O. N. Primachenko, V. S. Likhomanov, and Gy. Török, RSC Adv. 5, 73820 (2015).

    Article  CAS  Google Scholar 

  3. B. P. Tripathi and V. K. Shahi, Prog. Polym. Sci. 36, 945 (2011).

    Article  CAS  Google Scholar 

  4. E. Bakangura, L. Wu, L. Ge, Z. Yang, and T. Xu, Prog. Polym. Sci. 57, 103 (2016).

    Article  CAS  Google Scholar 

  5. T.-E. Kim, S. M. Juon, J. H. Park, Y.-G. Shul, and K. Y. Cho, Int. J. Hydrogen Energy 39, 16474 (2014).

    Article  CAS  Google Scholar 

  6. C. Y. Wong, W. Y. Wong, K. Ramya, M. Khalid, K. S. Loh, W. R. W. Daud, K. L. Lim, R. Walvekar, and A. A. H. Kadhum, Int. J. Hydrogen Energy 44, 6116 (2019).

    Article  CAS  Google Scholar 

  7. V. N. Mochalin and Yu. Gogotsi, Diamond Relat. Mater. 58, 161 (2015).

    Article  CAS  Google Scholar 

  8. D. M. Khan, A. Kausar, and S. M. Salman, Polym.-Plast. Technol. Eng. 56, 946 (2017).

    Article  CAS  Google Scholar 

  9. M. Sgambetterra, S. Brutti, V. Allodi, G. Mariotto, S. Panero, and M. A. Navarra, Energies 9, 1 (2016).

    Article  Google Scholar 

  10. D. J. Kim, M. J. Jo, and S. Y. Nam, J. Ind. Eng. Chem. 21, 36 (2015).

    Article  CAS  Google Scholar 

  11. V. V. Volkov, B. V. Mchedlishvili, V. I. Roldugin, S. S. Ivanchev, and A. B. Yaroslavtsev, Nanotechnol. Russ. 3, 656 (2008).

    Article  Google Scholar 

  12. A. B. Yaroslavtsev, Yu. A. Dobrovolsky, N. S. Shaglaeva, L. A. Frolova, E. V. Gerasimova, and E. A. Sanginov, Russ. Chem. Rev. 81, 191 (2012).

    Article  CAS  Google Scholar 

  13. A. A. Arslanova, E. A. Sanginov, and Yu. A. Dobrovol’skii, Russ. J. Electrochem. 54, 318 (2018).

    Article  CAS  Google Scholar 

  14. S. S. Ivanchev and S. V. Myakin, Russ. Chem. Rev. 79, 101 (2010).

    Article  CAS  Google Scholar 

  15. V. Yu. Dolmatov, Russ. Chem. Rev. 76, 339 (2007).

    Article  CAS  Google Scholar 

  16. A. T. Dideikin, Applications of Detonation Nanodiamonds, Ed. by A. Ya. Vul’ and O. A. Shenderova (St. Petersburg, 2016) [in Russian].

  17. A. Ya. Vul, E. D. Eidelman, A. E. Aleksenskiy, A. V. Shvidchenko, A. T. Dideikin, V. S. Yuferev, V. T. Lebedev, Yu. V. Kul’velis, and M. V. Avdeev, Carbon 114, 242 (2017).

    Article  CAS  Google Scholar 

  18. A. E. Aleksenskiy, E. D. Eydelman, and A. Ya. Vul’, Nanotechnol. Lett. 3, 68 (2011).

    Article  CAS  Google Scholar 

  19. V. Lebedev, Yu. Kulvelis, A. Kuklin, and A. Vul, Condens. Matter 1, 10 (2016).

    Article  Google Scholar 

  20. A. Kausar, R. Ashraf, and M. Siddiq, Polym.-Plast. Technol. Eng. 53, 550 (2014).

    Article  CAS  Google Scholar 

  21. V. Yu. Dolmatov, Nanotechnol. Russ. 4, 556 (2009).

    Article  Google Scholar 

  22. A. P. Voznyakovskii, Phys. Solid State 46, 644 (2004).

    Article  CAS  Google Scholar 

  23. N. Agmon, Chem. Phys. Lett. 244, 456 (1995).

    Article  CAS  Google Scholar 

  24. S. S. Ivanchev, O. N. Primachenko, S. Ya. Khaikin, V. S. Likhomanov, V. G. Barabanov, and A. S. Odinokov, RF Patent No. 2545182 (2015).

  25. S. S. Ivanchev, A. S. Odinokov, O. N. Primachenko, V. P. Tyul’mankov, and E. A. Marinenko, RF Patent No. 2671812 (2018).

  26. O. N. Primachenko, A. S. Odinokov, V. G. Barabanov, V. P. Tyul’mankov, E. A. Marinenko, I. V. Gofman, and S. S. Ivanchev, Russ. J. Appl. Chem. 91, 101 (2018).

    Article  CAS  Google Scholar 

  27. N. O. Mchedlov-Petrossyan, N. N. Kamneva, A. I. Marynin, A. P. Kryshtal, and E. Osawa, Phys. Chem. Chem. Phys. 17, 16186 (2015).

    Article  CAS  Google Scholar 

  28. T. A. Hill, D. L. Caroll, R. Czerw, C. W. Martin, and D. Perahia, J. Polym. Sci., Part B: Polym. Phys. 41, 149 (2003).

    Article  CAS  Google Scholar 

  29. L. Rubatat, G. Gebel, and O. Diat, Macromolecules 37, 7772 (2004).

    Article  CAS  Google Scholar 

  30. N. A. Izmailov, Electrochemistry of Solutions (Khimiya, Moscow, 1974) [in Russian], pp. 476–477.

    Google Scholar 

  31. R. Kuwertz, C. Kirstein, T. Turek, and U. Kunz, J. Membr. Sci. 500, 225 (2016).

    Article  CAS  Google Scholar 

  32. V. N. Postnov, N. A. Mel’nikova, G. A. Shul’meister, A. G. Novikov, I. V. Murin, and A. N. Zhukov, Russ. J. Gen. Chem. 87, 2754 (2017).

    Article  CAS  Google Scholar 

  33. S. A. Novikova, E. Yu. Safronova, A. A. Lysova, and A. B. Yaroslavtsev, Mendeleev Commun. 20, 156 (2010).

    Article  CAS  Google Scholar 

  34. E. Yu. Safronova, A. K. Osipov, and A. B. Yaroslavtsev, Petr. Chem. 58, 130 (2018).

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 19-03-00249).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Kulvelis.

Additional information

Translated by M. Timoshinina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Primachenko, O.N., Kulvelis, Y.V., Lebedev, V.T. et al. Perfluorinated Proton-Conducting Membrane Composites with Functionalized Nanodiamonds. Membr. Membr. Technol. 2, 1–9 (2020). https://doi.org/10.1134/S2517751620010060

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2517751620010060

Keywords:

Navigation