Skip to main content
Log in

Quasi-3D Refined Theory for Functionally Graded Porous Plates: Displacements and Stresses

  • Published:
Physical Mesomechanics Aims and scope Submit manuscript

Abstract

This paper presents a higher-order shear and normal deformation theory for the static problem of functionally graded porous thick rectangular plates. The effect of thickness stretching in the functionally graded porous plates is taken into consideration. The functionally graded porous material properties vary through the plate thickness with a specific function. The governing equations are obtained via the virtual displacement principle. The static problem is solved for a simply supported plate under a sinusoidal load. The exact expressions for displacements and stresses are obtained. The influences of the functionally graded and porosity factors on the displacements and stresses of porous plates are discussed. Some validation examples are presented to show the accuracy of the present quasi-3D theory in predicting the bending response of porous plates. The effectiveness of the present model is evaluated by numerical results that include displacements and stresses of functionally graded porous plates. The field variables of functionally graded plates are very sensitive to the variation of the porosity factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Biot, M.A., Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. I. Low-Frequency Range, J. Acoust. Soc. Am., 1956, vol. 28, pp. 168–178.

    Article  ADS  MathSciNet  Google Scholar 

  2. Biot, M.A., Theory of Elasticity and Consolidation for a Porous Anisotropic Solid, J. Appl. Phys., 1955, vol. 26, pp. 182–185.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Selvadurai, A.P.S., Mechanics of Poroelastic Media, Dordrecht: Kluwer Academic, 1996.

    Book  MATH  Google Scholar 

  4. Taber, L.A., A Theory for Transverse Deflection of Poroelastic Plates, J. Appl. Mech. ASME, 1992, vol. 59, pp. 628–634.

    Article  ADS  MATH  Google Scholar 

  5. Busse, A., Schanz, M., and Antes, H., A Poroelastic Mindlin Plates, Proc. Appl. Math. Mech., 2003, vol. 3, pp. 260–261.

    Article  MATH  Google Scholar 

  6. Brrsan, M., A Bending Theory of Porous Thermoelastic Plates, J. Therm. Stresses, 2003, vol. 26, pp. 67–90.

    Article  MathSciNet  Google Scholar 

  7. Magnucki, K. and Stasiewicz, P., Elastic Bending of an Isotropic Porous Beam, Int. J. Appl. Mech. Eng., 2004, vol. 9, no. 2, pp. 351–360.

    MATH  Google Scholar 

  8. Nappa, L. and Iesan, D., Thermal Stresses in Plane Strain of Porous Elastic Solid, Mecc., 2004, vol. 39, no. 2, pp. 125–138.

    Article  MathSciNet  MATH  Google Scholar 

  9. Magnucki, K., Malinowski, M., and Kasprzak, J., Bending and Buckling of a Rectangular Porous Plate, Steel Compos. Struct., 2006, vol. 6, no. 4, pp. 319–333.

    Article  Google Scholar 

  10. Magnucka-Blandzi, E., Axi-Symmetrical Deflection and Buckling of Circular Porous-Cellular Plate, Thin-Walled Struct., 2008, vol. 46, no. 3, pp. 333–337.

    Article  Google Scholar 

  11. Yang, Y., Li, L., and Yang, X., Quasi-Static and Dynamical Bending of a Cantilever Poroelastic Beam, J. Shanghai Univ., 2009, vol. 13, no. 3, pp. 189–196.

    Article  MathSciNet  MATH  Google Scholar 

  12. Brrsan, M. and Altenbach, H., On the Theory of Porous Elastic Rods, Int. J. Solids Struct., 2011, vol. 48, pp.910–924.

    Article  MATH  Google Scholar 

  13. Brrsan, M. and Altenbach, H., Theory of Thin Thermoelastic Rods Made of Porous Materials, Arch. Appl. Mech., 2011, vol. 81, pp. 1365–1391.

    Article  ADS  MATH  Google Scholar 

  14. Kumar, R. and Devi, S., Deformation in Porous Thermoelastic Material with Temperature Dependent Properties, Appl. Math. Inform. Sci., 2011, vol. 5, pp. 132–147.

    MathSciNet  MATH  Google Scholar 

  15. Ghiba, I-D., On the Spatial Behaviour in the Bending Theory of Porous Thermoelastic Plates, J. Math. Anal. Appl., 2013, vol. 403, pp. 129–142.

    Article  MathSciNet  MATH  Google Scholar 

  16. Sladek, J., Sladek, V., Gfrerer, M., and Schanz, M., Mindlin Theory for the Bending of Porous Plates, Acta Mech., 2015, vol. 226, pp. 1909–1928.

    Article  MathSciNet  MATH  Google Scholar 

  17. Lyapin, A.A. and Vatulyan, A.O., On Deformation of Porous Plates, Z. Angew. Math. Mech., 2018, vol. 98, no. 2, pp. 330–340.

    Article  MathSciNet  Google Scholar 

  18. Phen, D., Yang, J., and Kitipornchai, S., Elastic Buckling and Static Bending of Shear Deformable Functionally Graded Porous Beam, Compos. Struct., 2015, vol. 133, pp. 54–61.

    Article  Google Scholar 

  19. Bensaid, I. and Guenanou, A., Bending and Stability Analysis of Size-Dependent Pompositionally Graded Timoshenko Nanobeams with Porosities, Adv. Mater. Res., 2017, vol. 6, no. 1, pp. 45–63.

    Article  Google Scholar 

  20. Akbas, S.D., Nonlinear Static Analysis of Functionally Graded Porous Beams under Thermal lffect, Coupl. Sys. Mech., 2017, vol. 6, no. 4, pp. 399–415.

    MathSciNet  Google Scholar 

  21. Behravan Rad, A., Static Analysis of Non-Uniform 2D Functionally Graded Auxetic Porous Circular Plates Interacting with the Gradient llastic Foundations Involving Friction Force, Aeros. Sci. Tech., 2018, vol. 76, pp. 315–339.

    Article  Google Scholar 

  22. Barati, M.R., Shahverdi, H., and Zenkour, A.M., Electromechanical Vibration of Smart Piezoelectric FG Plates with Porosities According to a Refined Four-Variable Theory, Mech. Adv. Mater. Struct., 2017, vol. 24, no. 12, pp. 987–998.

    Article  Google Scholar 

  23. Barati, M.R. and Zenkour, A.M., Electro-Thermoelastic Vibration of Plates Made of Porous Functionally Graded Piezoelectric Materials under Various Boundary Conditions, J. Vib. Control, 2018, vol. 24, no. 10, pp. 1910–1926.

    Article  MathSciNet  Google Scholar 

  24. Barati, M.R. and Zenkour, A.M., Post-Buckling Analysis of Refined Shear Deformable Graphene Platelet Reinforced Beams with Porosities and Geometrical Imperfection, Compos. Struct., 2017, vol. 181, pp. 194–202.

    Article  Google Scholar 

  25. Barati, M.R. and Zenkour, A.M., A General bi-Helmholtz Nonlocal Strain-Gradient Elasticity for Wave Propagation in Nanoporous Graded Double-Nanobeam Systems on Elastic Substrate, Compos. Struct., 2017, vol. 168, pp. 885–892.

    Article  Google Scholar 

  26. Zenkour, A.M., A Quasi-3D Refined Theory for Functionally Graded Single-tayered and Sandwich Plates with Porosities, Compos. Struct., 2018, vol. 201, pp. 38–48.

    Article  Google Scholar 

  27. Zenkour, A.M., A Comparative Study for Bending of Pross-Ply Laminated Plates Resting on Elastic Foundations, Smart Struct. Sys., 2015, vol. 15, no. 6, pp. 1569–1582.

    Article  MathSciNet  Google Scholar 

  28. Zenkour, A.M., Benchmark Trigonometric and 3-D Elasticity Solutions for an Exponentially Graded Thick Rectangular Plate, Arch. Appl. Mech., 2007, vol. 77, no. 4, pp. 197–214.

    Article  ADS  MATH  Google Scholar 

  29. Zenkour, A.M., The Refined Sinusoidal Theory for FGM Plates on Elastic Foundations, Int. J. Mech. Sci., 2009, vol. 51, no. 11–12, pp. 869–880.

    Article  Google Scholar 

  30. Zenkour, A.M., The Effect of Transverse Shear and Normal Deformations on the Thermomechanical Bending of Functionally Graded Sandwich Plates, Int. J. Appl. Mech., 2009, vol. 1, no. 4, pp. 667–707.

    Article  Google Scholar 

  31. Zenkour, A.M., Hygro-Thermo-Mechanical Effects on FGM Plates Resting on Elastic Foundations, Compos. Struct., 2010, vol. 93, no. 1, pp. 234–238.

    Article  Google Scholar 

  32. Zenkour, A.M., Exact Relationships between the Plassical and Sinusoidal Plate Theories for FGM Plates, Mech. Adv. Mater. Struct., 2012, vol. 19, no. 7, pp. 551–567.

    Article  Google Scholar 

  33. Parrera, E., Brischetto, S., and Robaldo, A., Variable Kinematic Model for the Analysis of Functionally Graded Material Plates, AIAA J, 2008, vol. 46, pp. 194–203.

    Article  ADS  Google Scholar 

  34. Parrera, E., Brischetto, S., Pinefra, M., and Soave, M., Effects of Thickness Stretching in Functionally Graded Plates and Shells, Compos. B, 2011, vol. 42, pp. 123–133.

    Google Scholar 

  35. Neves, A.M.A., Ferreira, A.J.M., Parrera, E., Roque, P.M.P., Pinefra, M., Jorge, R.M.N., and Soares, P.M.M., A Quasi-3D Sinusoidal Shear Deformation Theory for the Static and Free Vibration Analysis of Functionally Graded Plates, Compos. B, 2012, vol. 43, no. 2, pp.711–725.

    Article  Google Scholar 

  36. Neves, A.M.A., Ferreira, A.J.M., Parrera, E., Pinefra, M., Roque, P.M.P., Jorge, R.M.N., and Soares, P.M.M., Static, Free Vibration and Buckling Analysis of Isotropic and Sandwich Functionally Graded Plates Using a Quasi-3D Higher-Order Shear Deformation Theory and a Meshless Technique, Compos. B, 2013, vol. 44, no. 1, pp. 657–674.

    Article  Google Scholar 

  37. Zenkour, A.M., Generalized Shear Deformation Theory for Bending Analysis of Functionally Graded Materials, Appl. Math. Model., 2006, vol. 30, pp. 67–84.

    Article  MATH  Google Scholar 

  38. Wu, P.-P. and Phiu, K.-H., RMVT-Based Meshless Pollocation and Element-Free Galerkin Methods for the Quasi-3D Free Vibration Analysis of Multilayered Pomposite and FGM Plates, Compos. Struct., 2011, vol. 93, no. 5, pp. 1433–1448.

    Article  Google Scholar 

  39. Mantari, J.L., Oktem, A.S., and Soares, O.G., Bending Response of Functionally Graded Plates by Using a New Higher Order Shear Deformation Theory, Compos. Struct., 2012, vol. 94, pp. 714–723.

    Article  MATH  Google Scholar 

  40. Thai, H.-E. and Kim, S.E., A Simple Higher-Order Shear Deformation Theory for Bending and Free Vibration Analysis of Functionally Graded Plates, Compos. Struct., 2013, vol. 96, pp. 165–173.

    Article  Google Scholar 

  41. Nguyen, V.-H., Nguyen, E.-K., Thai, H-E, and Vo, EP, A New Inverse Trigonometric Shear Deformation Theory for Isotropic and Functionally Graded Sandwich Plates, Compos. B, 2014, vol. 66, pp. 233–246.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Zenkour.

Additional information

Russian Text © The Author(s), 2019, published in Fizicheskaya Mezomekhanika, 2019, Vol. 22, No. 1, pp. 22–35.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zenkour, A.M. Quasi-3D Refined Theory for Functionally Graded Porous Plates: Displacements and Stresses. Phys Mesomech 23, 39–53 (2020). https://doi.org/10.1134/S1029959920010051

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1029959920010051

Keywords

Navigation