Skip to main content
Log in

Extreme Strain Fluctuations in Polycrystalline Materials

  • Published:
Physical Mesomechanics Aims and scope Submit manuscript

Abstract

The stochastic structure of polycrystalline materials causes a high inhomogeneity of the kinematic and force fields in grains of materials and large fluctuations of these fields. The inhomogeneity and fluctuations are insignificant in some cases, but they become crucial in the study of various critical phenomena whose occurrence strongly depends on the type of material microstructure. Fluctuations mainly arise due to the elastic interaction of grains, which has a long-range effect. Therefore, it is necessary to account for the interaction of a large number of grains, which is difficult to do using conventional methods (direct computer modeling and others). In the present paper, inhomogeneous mesostrain fluctuations in grains of polycrystalline materials were estimated using a field-theoretical approach to a boundary-value problem of microheterogeneous material deformation. Particular attention is paid to the calculation of extreme fluctuations that are important for some critical phenomena, such as, e.g., crack initiation under gigacycle fatigue when the macrostress amplitude and the mean stresses in grains are much lower than the quantities included in any macroscopic damage or fatigue criteria. Phe maximum mesostrains in grains can exceed several times the macrostrains. Extreme fluctuations in a grain are generated in grain clusters of specific configuration. Phe applied approach makes it possible to predict patterns of such clusters. Extreme fluctuations in the bulk grains of a polycrystalline body are much higher than in the surface grains, due to which the behavior of the material surface layers and bulk volumes is different. Quantitative data are given for the case of uniaxial tension of polycrystalline zinc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shavshukov, V. and Tashkinov, A., Quantum Field Theory Approach to Mechanics of Polycrystals, Solid State Phenom., 2016, vol. 243, pp. 131–138. doi https://doi.org/10.4028/www.scientific.net/SSP.243.131

    Article  Google Scholar 

  2. Shavshukov, V.E., Stress Field Distribution in Polycrystalline Materials, Fiz. Mezomekh., 2012, vol. 15, no. 6, pp. 85–91.

    Google Scholar 

  3. Zimmermann, M., Diversity of Damage Evolution during Cyclic Loading at Very High Numbers of Cycles, Int. Mater. Rev., 2012, vol. 57, no. 2, pp. 73–91.

    Article  Google Scholar 

  4. Oja, M., Chandran, K.S.R., and Tyron, R.J., Orientation Imaging Microscopy of Fatigue Crack Formation in Waspaloy: Crystallographic Conditions for Crack Nucleation, Int. J. Fatig., 2010, vol. 32, pp. 551–556. doi https://doi.org/10.1016/j.ijfatigue.2009.01.01.012

    Article  Google Scholar 

  5. de Wit, R., The Continuum Theory of Stationary Dislocations, Solid State Phys., 1960, vol. 10, pp. 249–292.

    Article  Google Scholar 

  6. Tashkinov, A.A. and Shavshukov, A.A., Solving the Problems of Deformation Mechanics of Polycrystalline Materials on the Basis of Perturbation Theory, Vychisl. Mekh. Splosh. Sred, 2016, vol. 9, no. 4, pp. 486–497. doi https://doi.org/10.7242/1999-6691/2016.9.4.4.41

    Google Scholar 

  7. Frantsevich, I.N., Voronov, F.F., and Bakuta, S.A., Elastic Constants and Elastic Moduli of Metals and Nonmetals, Kiev: Naukova Dumka, 1982.

    Google Scholar 

  8. Nye, J., Physical Properties of Crystals, Oxford: Oxford University Press, 1985.

    Google Scholar 

  9. The Physics of Granular Media, Hinrichsen, H. and Wolf, D.E., Eds., Dordrecht: Wiley, 2004.

    Google Scholar 

  10. Surface Layers and Interfaces in Heterogeneous Materials, Panin, V.E., Ed., Novosibirsk: Publishing House SB RAS, 2013.

    Google Scholar 

Download references

Funding

This work was financially supported by the Russian Foundation for Basic Research (grants 18-01-00675, 17-41-590433, and 16-01-00682).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. E. Shavshukov.

Additional information

Russian Text © The Author(s), 2018, published in Fizicheskaya Mezomekhanika, 2018, Vol. 21, No. 5, pp. 67–75.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shavshukov, V.E. Extreme Strain Fluctuations in Polycrystalline Materials. Phys Mesomech 23, 13–20 (2020). https://doi.org/10.1134/S1029959920010026

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1029959920010026

Keywords

Navigation