Skip to main content
Log in

Fatigue Strength Reduction Factors Based on Strain Energy Density Applied to Sharp and Blunt Notches under Multiaxial Loading

  • Published:
Physical Mesomechanics Aims and scope Submit manuscript

Abstract

Real mechanical assemblies favor the initiation and propagation of fatigue cracks due to stress concentration phenomena arising from the geometrical features such as notches, corners, holes, welding toes, etc. Classical fatigue analysis of notched specimens is done using an empirical formula and a fitted fatigue strength reduction factor, which is experimentally expensive and lacks physical scene. In the present paper, a simple and meaningful methodology is proposed to assess notched components against multiaxial fatigue. In this method, by precisely defining a finite-size volume surrounding the fatigue crack initiation site (notch tip), over which the strain energy is averaged, the morphological effect on the process zone is fully addressed. Such a method takes into account the effect of combination of different modes (I, II, III) and the load ratio. In order to implement it for components with a sharp or blunt notch, it is enough to analyze a linear elastic finite element model and to know only the properties of materials obtained from simple uniaxial tests. New relationships for determining an effective (tensile-type) stress and fatigue strength reduction factors are derived for notched specimens. The accuracy of the proposed model is validated by experimental data available in the literature, related to tubular specimens weakened with sharp/blunt notches under combined bending-torsion loading. Such a situation widely appears in equipment used for various branches of industry such as piping, automotive, power plant, drilling, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rice, J.R., Some Remarks on Elastic Crack-Tip Stress Fields, Int. J. Solids Struct., 1972, vol. 8, pp. 751–758. doi https://doi.org/10.1016/0020-7683(72)90040-6

    Article  Google Scholar 

  2. Filippi, S., Lazzarin, P., and Tovo, R., Developments of Some Explicit Formulas Useful to Describe Elastic Stress Fields Ahead of Notches in Plates, Int. J. Solids Struct., 2002, vol. 39, pp. 4543–4565. doi https://doi.org/10.1016/S00207683(02)00342-6

    Article  Google Scholar 

  3. Pook, L.P., Berto, F., and Campagnolo, A., State of the Art of Corner Point Singularities under in-Plane and out-of-Plane Loading, Eng. Fract. Mech., 2017, vol. 174, pp. 2–9. doi https://doi.org/10.1016/j.engfracmech.2016.10.001

    Article  Google Scholar 

  4. Pook, L.P., Berto, F., Campagnolo, A., and Lazzarin, P., Coupled Fracture Mode of a Cracked Disc under AntiPlane Loading, Eng. Fract. Mech., 2014, vol. 128, pp. 22–36. doi https://doi.org/10.1016/j.engfracmech.2014.07.001

    Article  Google Scholar 

  5. Kotousov, A., Lazzarin, P., Berto, F., and Pook, L.P., Three-Dimensional Stress States at Crack Tip Induced by Shear and Anti-Plane Loading, Eng. Fract. Mech., 2013, vol. 108, pp. 65–74. doi https://doi.org/10.1016/j.engfracmech.2013.04.010

    Article  Google Scholar 

  6. Liu, Y. and Mahadevan, S., Fatigue Limit Prediction of Notched Components Using Short Crack Growth Theory and an Asymptotic Interpolation Method, Eng. Fract. Mech., 2009, vol. 76, pp. 2317–2331. doi https://doi.org/10.1016/j.engfracmech.2008.06.006

    Article  Google Scholar 

  7. Dowling, N.E., Mechanical Behavior of Materials: Engineering Methods for Deformation, Fracture, and Fatigue, New York: Pearson, 2012.

    Google Scholar 

  8. Susmel, L., Multiaxial Notch Fatigue, Berlin: Elsevier, 2009.

    Book  Google Scholar 

  9. Livieri, P. and Lazzarin, P., Fatigue Strength of Steel and Aluminium Welded Joints Based on Generalised Stress Intensity Factors and Local Strain Energy Values, Int. J. Fract., 2005, vol. 133, pp. 247–276.

    Article  Google Scholar 

  10. Lazzarin, P., Sonsino, C.M., and Zambardi, R., A Notch Stress Intensity Approach to Assess the Multiaxial Fatigue Strength of Welded Tube-to-Flange Joints Subjected to Combined Loadings, Fatigue Fract. Eng. Mater. Struct., vol. 27, pp. 127–140. doi https://doi.org/10.1111/j.1460-2695.2004.00733.x

  11. Atzori, B., Lazzarin, P., and Meneghetti, G., Fatigue Strength Assessment of Welded Joints: From the Integration of Paris’ Law to a Synthesis Based on the Notch Stress Intensity Factors of the Uncracked Geometries, Eng. Fract. Mech., 2008, vol. 75, pp. 364–378. doi https://doi.org/10.1016/j.engfracmech.2007.03.029

    Article  Google Scholar 

  12. Lazzarin, P. and Zambardi, R., A Finite-Volume-Energy Based Approach to Predict the Static and Fatigue Behavior of Components with Sharp V-Shaped Notches, Int. J. Fract., 2001, vol. 112, pp. 275–298. doi https://doi.org/10.1023/a:1013595930617

    Article  Google Scholar 

  13. Berto, F. and Lazzarin, P., A Review of the Volume-Based Strain Energy Density Approach Applied to V-Notches and Welded Structures, Theor. Appl. Fract. Mech., 2009, vol. 52, pp. 183–194. doi https://doi.org/10.1016/j.tafmec.2009.10.001

    Article  Google Scholar 

  14. Berto, F., Lazzarin, P., and Marangon, C., Fatigue Strength of Notched Specimens Made of 40CrMoV13.9 under Pultiaxial Loading, Mater. Des., 2014, vol. 54, pp. 57–66. doi https://doi.org/10.1016/j.matdes.2013.08.013

    Article  Google Scholar 

  15. Berto, F., Lazzarin, P., and Marangon, C., Brittle Fracture of U-Notched Graphite Plates under Mixed Mode Loading, Mater. Des., 2012, vol. 41, pp. 421–432. doi https://doi.org/10.1016/j.matdes.2012.05.022

    Article  Google Scholar 

  16. Torabi, A.R., Campagnolo, A., and Berto, F., Local Strain Energy Density to Predict Mode II Brittle Fracture in Brazilian Disk Specimens Weakened by V-Notches with End Holes, Mater. Des., 2015, vol. 69, pp. 22–29.

    Article  Google Scholar 

  17. Lazzarin, P., Berto, F., and Ayatollahi, M.R., Brittle Failure of Inclined Key-Hole Notches in Isostatic Graphite under in-Plane Mixed Mode Loading, Fatigue Fract. Eng. Mater. Struct., 2013, vol. 36, pp. 942–955. doi https://doi.org/10.1111/ffe.12057

    Article  Google Scholar 

  18. Berto, F., Lazzarin, P., and Ayatollahi, M.R., Brittle Fracture of Sharp and Blunt V-Notches in Isostatic Graphite under Pure Compression Loading, Carbon, 2013, vol. 63, pp. 101–116. doi https://doi.org/10.1016/j.carbon.2013.06.045

    Article  Google Scholar 

  19. Torabi, A.R. and Berto, F., Strain Energy Density to Assess Mode II Fracture in U-Notched Disk-Type Graphite Plates, Int. J. Damage Mech., 2014, vol. 23, pp. 917–930.

    Article  Google Scholar 

  20. Gomez, F.J., Elices, M., Berto, F., and Lazzarin, P., Local Strain Energy to Assess the Static Failure of U-Notches in Plates under Mixed Mode Loading, Int. J. Fract., 2007, vol. 145, pp. 29–45. doi https://doi.org/10.1007/s10704-007-9104-3

    Article  Google Scholar 

  21. Berto, F., Lazzarin, P., Gomez, F.J., and Elices, M., Fracture Assessment of U-Notches under Mixed Mode Loading: Two Procedures Based on the “Equivalent Local Mode I” Concept, Int. J. Fract., 2008, vol. 148, pp. 415–433. doi https://doi.org/10.1007/s10704-008-9213-7

    Article  Google Scholar 

  22. Taghizadeh, K., Berto, F., and Barati, E., Local Strain Energy Density Applied to Martensitic Steel Plates Weakened by U-Notches under Mixed Mode Loading, Theor. Appl. Fract. Mech., 2012, vol. 59, pp. 21–28. doi https://doi.org/10.1016/j.tafmec.2012.05.003

    Article  Google Scholar 

  23. Salavati, H., Alizadeh, Y., and Berto, F., Effect of Notch Depth and Radius on the Critical Fracture Load of Bainitic Functionally Graded Steels under Mixed Mode I + II Loading, Phys. Mesomech., 2014, vol. 17, no. 3, pp. 178–189. doi https://doi.org/10.1134/s1029959914030023

    Article  Google Scholar 

  24. Negru, R., Marsavina, L., Filipescu, H., Cäplescu, C., and Voiconi, T., Assessment of Brittle Fracture for {PUR} Materials Using Local Strain Energy Density and Theory of Critical Distances, Theor. Appl. Fract. Mech., 2015, vol. 79, pp. 62–69. doi https://doi.org/10.1016/j.tafmec.2015.07.011

    Article  Google Scholar 

  25. Marsavina, L., Berto, F., Negru, R., Serban, D.A., and Linul, E., An Engineering Approach to Predict Mixed Mode Fracture of PUR Foams Based on ASED and Micromechanical Modelling, Theor. Appl. Fract. Mech., 2017, vol. 91, pp. 148–154. doi https://doi.org/10.1016/j.tafmec.2017.06.008

    Article  Google Scholar 

  26. Berto, F., Campagnolo, A., and Welo, T., Local Strain Energy Density to Assess the Multiaxial Fatigue Strength of Titanium Alloys, Fract. Struct. Integr., 2016, pp. 69–79.

  27. Meneghetti, G., Campagnolo, A., Berto, F., and Tanaka, K., Crack Initiation Life in Notched Ti-6Al-4V Titanium Bars under Uniaxial and Multiaxial Fatigue: Synthesis Based on the Averaged Strain Energy Density Approach, Frat. Ed. Integr. Strutt., 2017, vol. 8.

  28. Razavi, S.M.J., Ferro, P., Berto, F., and Torgersen, J., Fatigue Strength of Blunt V-Notched Specimens Produced by Selective Laser Melting of Ti-6Al-4V, Theor. Appl. Fract. Mech., 2017. doi https://doi.org/10.1016/j.tafmec.2017.06.021

  29. Mohammadi, H., Salavati, H., Mosaddeghi, M.R., Yusefi, A., and Berto, F., Local Strain Energy Density to Predict Mixed Mode I + {II} Fracture in Specimens Made of Functionally Graded Materials Weakened by V-Notches with End Holes, Theor. Appl. Fract. Mech., 2017, vol. 92, pp. 47–58. doi https://doi.org/10.1016/j.tafmec.2017.05.009

    Article  Google Scholar 

  30. Mohammadi, H., Salavati, H., Alizadeh, Y., Abdullah, A., and Berto, F., Fracture Investigation of U-Notch Made of Tungsten-Copper Functionally Graded Materials by Means of Strain Energy Density, Fatig. Fract. Eng. Mater. Struct., 2017, vol. 40, pp. 1984–1993. doi https://doi.org/10.1111/ffe.12616

    Article  Google Scholar 

  31. Mohammadi, H., Salavati, H., Alizadeh, Y., Berto, F., and Panin, S.V., Fracture Investigation of V-Notch Made of Tungsten-Copper Functionally Graded Materials, Phys. Mesomech., 2017, vol. 20, pp. 457–464. doi https://doi.org/10.1134/S1029959917040117

    Article  Google Scholar 

  32. Salavati, H., Mohammadi, H., Yusefi, A., and Berto, F., Fracture Assessment of V-Notched Specimens with End Holes Made of Tungsten-Copper Functionally Graded Material under Mode I Loading, Theor. Appl. Fract. Mech., 2017. doi https://doi.org/10.1016/j.tafmec.2017.06.013

  33. Mohammadi, H., Salavati, H., Alizadeh, Y., and Berto, F., Prevalent mode {{}II{}} Fracture Assessment of Inclined U-Notched Specimens Made of Tungsten-Copper Functionally Graded Material, Theor. Appl. Fract. Mech., 2017, vol. 89, pp. 90–99. doi https://doi.org/10.1016/j.tafmec.2017.01.010

    Article  Google Scholar 

  34. Gallo, P., Sumigawa, T., Kitamura, T., and Berto, F., Static Assessment of Nanoscale Notched Silicon Beams Using the Averaged Strain Energy Density Method, Theor. Appl. Fract. Mech., 2018, vol. 95, pp. 261–269. doi https://doi.org/10.1016/j.tafmec.2018.03.007

    Article  Google Scholar 

  35. Gallo, P. and Berto, F., Advanced Materials for Applications at High Temperature: Fatigue Assessment by Means of Local Strain Energy Density, Adv. Eng. Mater., vol. 18 (n.d.), pp. 2010–2017. doi https://doi.org/10.1002/adem.201500547

  36. Berto, F., Gallo, P., and Lazzarin, P., High Temperature Fatigue Tests of a Cu-Be Alloy and Synthesis in Terms of Linear Elastic Strain Energy Density, Adv. Fract. Damage Mech. XIII, Trans. Tech. Publications, 2015, pp. 77–80. doi https://doi.org/10.4028/www.scientific.net/KEM.627.77

  37. Kallmeyer, A.R., Krgo, A., and Kurath, P., Evaluation of Multiaxial Fatigue Life Prediction Methodologies for Ti-6Al-4V, J. Eng. Mater. Technol., 2002, vol. 124, pp. 229–237.

    Article  Google Scholar 

  38. Karolczuk, A. and Macha, E., A Review of Critical Plane Orientations in Multiaxial Fatigue Failure Criteria of Metallic Materials, Int. J. Fract., 2005, vol. 134, p. 267.

    Article  Google Scholar 

  39. Fatemi, A. and Shamsaei, N., Multiaxial Fatigue: An Overview and Some Approximation Models for Life Estimation, Int. J. Fatigue, 2011, vol. 33, pp. 948–958. doi https://doi.org/10.1016/j.ijfatigue.2011.01.003

    Article  Google Scholar 

  40. Susmel, L., A Unifying Approach to Estimate the High-Cycle Fatigue Strength of Notched Components Subjected to Both Uniaxial and Multiaxial Cyclic Loadings, Fatig. Fract. Eng. Mater. Struct., vol. 27, pp. 391–411. doi https://doi.org/10.1111/j.1460-2695.2004.00759.x

  41. Lazzarin, P. and Zambardi, R., The Equivalent Strain Energy Density Approach Re-Formulated and Applied to Sharp V-Shaped Notches under Localized and Generalized Plasticity, Fatig. Fract. Eng. Mater. Struct., vol. 25, pp. 917–928. doi https://doi.org/10.1046/j.14602695.2002.00543.x

  42. Zappalorto, M., Lazzarin, P., and Filippi, S., Stress Field Equations for U and Blunt V-Shaped Notches in Axisymmetric Shafts under Torsion, Int. J. Fract., 2010, vol. 164, pp. 253–269.

    Article  Google Scholar 

  43. Lazzarin, P., Zappalorto, M., and Berto, F., Averaged Strain Energy Density and J-Integral for U- and Blunt V-Shaped Notches under Torsion, Int. J. Fract., 2014, vol. 188, pp. 173–186. doi https://doi.org/10.1007/s10704-014-9953-5

    Article  Google Scholar 

  44. Yates, J.R. and Brown, M.W., Prediction of the Length of Non-Propagating Fatigue Cracks, Fatigue Fract. Eng. Mater. Struct., vol. 10, pp. 187–201. doi https://doi.org/10.1111/j.1460-2695.1987.tb00477.x

  45. Sonsino, C.M., Multiaxial Fatigue of Welded Joints under In-Phase and Out-of-Phase Local Strains and Stresses, Int. J. Fatigue, 1995, vol. 17, pp. 55–70. doi https://doi.org/10.1016/0142-1123(95)93051-3

    Article  Google Scholar 

  46. Lazzarin, P., Berto, F., Gomez, F.J., and Zappalorto, M., Some Advantages Derived from the Use of the Strain Energy Density over a Control Volume in Fatigue Strength Assessments of Welded Joints, Int. J. Fatigue, 2008, vol. 30, pp. 1345–1357. doi https://doi.org/10.1016/j.ijfatigue.-2007.10.012

    Article  Google Scholar 

  47. Lazzarin, P., Berto, F., and Zappalorto, M., Rapid Calculations of Notch Stress Intensity Factors Based on Averaged Strain Energy Density from Coarse Meshes: Theoretical Bases and Applications, Int. J. Fatigue, 2010, vol. 32, pp. 1559–1567. doi https://doi.org/10.1016/j.ijfatigue.2010.02.017

    Article  Google Scholar 

  48. Salavati, H., Alizadeh, Y., and Berto, F., Fracture Assessment of Notched Bainitic Functionally Graded Steels under Mixed Mode (I + II) Loading, Phys. Mesomech., 2015, vol. 18, pp. 307–325.

    Article  Google Scholar 

  49. Radaj, D., Lazzarin, P., and Berto, F., Fatigue Assessment of Welded Joints under Slit-Parallel Loading Based on Strain Energy Density or Notch Rounding, Int. J. Fatigue, 2009, vol. 31, pp. 1490–1504. doi https://doi.org/10.1016/j.ijfatigue.2009.05.005

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Alizadeh.

Additional information

Russian Text © The Author(s), 2019, published in Fizicheskaya Mezomekhanika, 2019, Vol. 22, No. 1, pp. 92–104.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abolghasemzadeh, M., Alizadeh, Y. & Mohammadi, H. Fatigue Strength Reduction Factors Based on Strain Energy Density Applied to Sharp and Blunt Notches under Multiaxial Loading. Phys Mesomech 23, 66–80 (2020). https://doi.org/10.1134/S1029959920010075

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1029959920010075

Keywords

Navigation