Skip to main content
Log in

Bacterial Pathogens: Migration from Environmental Reservoirs to Human Host

  • Published:
Biology Bulletin Reviews Aims and scope Submit manuscript

Abstract

The natural foci of sapronoses are characterized from the ecological point of view. Many pathogenic bacteria (Vibrio, Yersinia, Salmonella, Listeria, Escherichia, etc.), as well as conditionally pathogenic enterobacteria, are connected by a common ecological feature, the ability to exist autonomously in the external environment. The role of pathogen associations with other organisms in the formation of pathogen reservoirs is discussed. This analytical review of the current literature focuses on the role of crops and wild plants as alternative hosts for a number of pathogenic bacteria (Vibrio, Yersinia, Salmonella, Listeria, Escherichia, etc.). Experimental evidence shows that the causative agents of human and animal diseases can penetrate and multiply within tissues of many cultivated plants, the consumption of which contributes to outbreaks of foodborne infections. Novel approaches to the future minimization of this global epidemiological issue are discussed. These approaches include the search for wild plants that are resistant to enteropathogens and the construction of transgenic plant crops based on them that express antimicrobial peptides. Studies of wild plants of medical importance are described. With the use of nature-like biotechnologies, they can be used to produce new, highly active compounds that are effective against the multiresistant properties of a number of antibiotics. The results of the author’s research on the biological activity of wild-plant extracts with respect to Listeria and toxin-producing Echerichia are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Abreu, A.C., McBain, A.J., and Simões, M., Plants as sources of new antimicrobials and resistance-modifying agents, Nat. Prod. Rep., 2012, vol. 29, pp. 1007–1021.

    Article  CAS  Google Scholar 

  2. Alam, M.T., Weppelmann, T.A., Weber, C.D., et al., Monitoring water sources for environmental reservoirs of toxigenic Vibrio cholerae 01, Haiti, Emerging Infect. Dis., 2014, vol. 20, no. 3, pp. 356–363.

    Article  Google Scholar 

  3. Antimicrobial Resistance: Global Report on Surveillance, Geneva: World Health Org., 2014.

  4. Barak, J.D. and Schroeder, B.K., Interrelationships of food safety and plant pathology: the life cycle of human pathogens on plants, Annu. Rev. Phytopathol., 2012, vol. 50, pp. 12–26.

    Article  Google Scholar 

  5. Berger, C.N., Sodha, S.V., and Shaw, K., Fresh fruit and vegetables as vehicles for the transmission of human pathogens, Environ. Microbiol., 2010, vol. 12, no. 9, pp. 2385–2397.

    Article  Google Scholar 

  6. Boqvist, S., Söderqvist, K., and Vågsholm, I., Food safety challenges and one health within Europe, Acta Vet. Scand., 2018, vol. 60, no. 1, pp. 1186–1198.

    Article  Google Scholar 

  7. Brandl, M.T. and Amundson, R., Leaf age as a risk factor in contamination of lettuce with Escherichia coli O157:H7 and Salmonella enterica,Appl. Environ. Microbiol., 2008, vol. 74, no. 8, pp. 2298–2306.

    Article  CAS  Google Scholar 

  8. Buttner, D. and Bonas, U., Common infection strategies of plant and animal pathogenic bacteria, Curr. Opin. Plant Biol., 2003, vol. 6, pp. 312–319.

    Article  Google Scholar 

  9. Buttner, D. and He, S.Y., Type III protein secretion in plant pathogenic bacteria, Plant Physiol., 2009, vol. 150, no. 4, pp. 1656–1664.

    Article  Google Scholar 

  10. Colwell, R.R., Infectious disease and environmental: cholera as a paradigm for waterborne disease, Int. Microbiol., 2004, vol. 7, no. 4, pp. 285–289.

    PubMed  Google Scholar 

  11. Colwell, R.R. and Hug, A., Environmental reservoir of Vibrio cholerae,Ann. N.Y. Acad. Sci., 1994, vol. 740, pp. 44–54.

    Article  CAS  Google Scholar 

  12. Conter, M., Paludi, D., Zanardi, E., et al., Characterization of antimicrobial resistance of foodborne Listeria monocytogenes,Int. J. Food Microbiol., 2009, vol. 128, no. 3, pp. 497–500.

    Article  CAS  Google Scholar 

  13. Critically Important Antimicrobials for Human Medicine, Geneva: World Health Org., 2013, 3rd ed.

  14. de Noordhout, C.M., Devleesschauwer, B., Angulo, F.J., et al., The global burden of listeriosis: a systematic review and meta-analysis, Lancet Infect. Dis., 2014, vol. 14, no. 11, pp. 1073–1082.

    Article  Google Scholar 

  15. Didenko, L.V., Konstantinova, N.D., Solokhina, L.V., Pushkareva, V.I., and Litvin, V.I., Ultrastructure of Yersinia pseudotuberculosis in the process of their reversible transition into the dormant (non-culturable) state in association with blue-green algae, Zh. Mikrobiol., Epidemiol. Immunobiol., 2002, no. 1, pp. 17–23.

  16. Dinu, L.D. and Bach, S., Induction of viable but nonculturable Escherichia coli O157:H7 in the phyllosphere of lettuce: a food safety risk factor, Appl. Environ. Microbiol., 2011, vol. 77, no. 23, pp. 8295–8302.

    Article  CAS  Google Scholar 

  17. Dong, Y., Iniguez, A.L., and Ahmer, B.M., Kinetics and strain specificity of rhizosphere and endophytic colonization by enteric bacteria on seedlings of Medicago sativa and Medicago truncatula,Appl. Environ. Microbiol., 2003, vol. 69, no. 3, pp. 1783–1790.

    Article  CAS  Google Scholar 

  18. Erken, M., Lutz, C., and McDougald, D., The rise of pathogens: predation as a factor driving the evolution of human pathogens in the environment, Microb. Ecol., 2013, vol. 65, no. 4, pp. 860–868.

    Article  Google Scholar 

  19. Heaton, J.S. and Jones, K., Microbial contamination of fruit and vegetables and the behavior of enteropathogens in the phyllosphere, J. Appl. Microbiol., 2008, vol. 104, pp. 613–626.

    Article  CAS  Google Scholar 

  20. Hemandez-Reyes, C. and Schikora, A., Salmonella, a cross-kingdom pathogen infecting humans and plants, FEMS Microbiol. Lett., 2013, vol. 343, pp. 1–7.

    Article  Google Scholar 

  21. Islam, M.S., Jahid, M.I., Rahman, M.M., et al., Biofilm acts as a microenvironment for plankton-associated Vibrio cholerae in the aquatic environment of Bangladesh, Microbiol. Immunol., 2007, vol. 51, no. 4, pp. 369–379.

    Article  CAS  Google Scholar 

  22. Islam, M.T., Alam, M., and Boucher, Y., Emergence, ecology and dispersal of the pandemic generating Vibrio cholerae lineage, Int. Microbiol., 2017, vol. 20, no. 3, pp. 106–115.

    CAS  PubMed  Google Scholar 

  23. Kim, S.Y., Kang, D.H., Kim, J.K., et al., Antimicrobial activity of plant extracts against Salmonella typhimurium, Escherichia coli O157:H7 and Listeria monocytogenes on fresh lettuce, J. Food Sci., 2011, vol. 76, pp. 41–46.

    Article  Google Scholar 

  24. Litvin, V.Yu., Saprophytic phase in the ecology of pathogens of infectious diseases, Zh. Mikrobiol., Epidemiol. Immunobiol., 1985, no. 6, pp. 98–103.

  25. Litvin, V.Yu., Pushkareva, V.I., and Emel’yanenko, E.N., Biocenotic basis of the natural foci of sapronoses, Zh. Mikrobiol., Epidemiol. Immunobiol., 2004, no. 4, pp. 21–24.

  26. Litvin, V.Yu., Gintsburg, A.L., Pushkareva, V.I., et al., Epidemiologicheskie aspekty ekologii bakterii (Epidemiological Aspects of Ecology of Bacteria), Moscow: Farmarus-print, 1998.

  27. Litvin, V.Yu., Somov, G.P., and Pushkareva, V.I., Sapronoses as natural focal diseases, Epidemiol. Vaktsinoprofil., 2010, no. 1, pp. 10–16.

  28. Lutz, C., Erken, M., Noorian, P., et al., Environmental reservoirs and mechanisms of persistence of Vibrio cholerae,Front. Microbiol., 2013, vol. 4, pp. 375–385.

    Article  Google Scholar 

  29. Mardafkan, N., Iranmanesh, M., Larijani, K., et al., Chemical components and antibacterial activities of essential oils obtained from Iranian local Lavandula officinalis and Thymus vulgaris against pathogenic bacteria isolated from human, J. Food Biosci. Technol., 2015, vol. 5, pp. 31–36.

    Google Scholar 

  30. Martinez, J.L., Bacterial pathogens: from natural ecosystems to human hosts, Environ. Microbiol., 2013, vol. 15, pp. 325–333.

    Article  CAS  Google Scholar 

  31. Mohamed, H.G., Gaafar, A.M., and Soliman, A.Sh., Antimicrobial activities of essential oil of eight plant species from different families against some pathogenic microorganisms, Res. J. Microbiol., 2016, vol. 11, pp. 28–34.

    Article  Google Scholar 

  32. Perestrelo, R., Silva, C.L., Rodrigues, F., et al., A powerful approach to explore the potential of medicinal plants as a natural source of odor and antioxidant compounds, J. Food Sci. Technol., 2016, vol. 53, pp. 132–144.

    Article  CAS  Google Scholar 

  33. Persiyanova, E.V., Characteristics of relationship of Yersinia pseudotuberculosis with the plant cells, Cand. Sci. (Biol.) Dissertation, Vladivostok: Far Eastern State Univ., 2008.

  34. Prithiviral, B., Weir, T., and Bais, H.P., Plant models for animal pathogenesis, Cell. Microbiol., 2005, vol. 7, pp. 315–324.

    Article  Google Scholar 

  35. Pushkareva, V.I. and Ermolaeva, S.A., Listeria monocytogenes virulence factor listeriolysin O favors bacterial growth with the ciliate Tetrahymena pyriformis causes protozoan encystment and promotes bacterial survival inside cysts, BMC Microbiol., 2010, vol. 10, p. 26. https://doi.org/10.1186/1471-2180-1026

    Article  PubMed  PubMed Central  Google Scholar 

  36. Pushkareva, V.I. and Ermolaeva, S.A., Experimental evidences on a crop plant role in epidemiology of sapronotic (soil-borne) bacterial infections, Zh. Mikrobiol., Epidemiol. Immunobiol., 2018, no. 5, pp. 113–121.

  37. Pushkareva, V.I., Ermolaeva, S.A., and Litvin, V.Yu., Hydrobionts as reservoir hosts for sapronous infections, Zool. Zh., 2010a, vol. 89, pp. 37–47.

    Google Scholar 

  38. Pushkareva, V.I., Ermolaeva, S.A., and Litvin, V.Yu., Hydrobionts as reservoir hosts for infectious agents of sapronoses, Biol. Bull. (Moscow), 2010b, vol. 37, pp. 1–10.

    Article  Google Scholar 

  39. Pushkareva, V.I., Litvin, V.Yu., and Ermolaeva, S.A., Plants as a reservoir and source of food pathogens, Epidemiol. Vaktsinoprofil., 2012, no. 2, pp. 10–20.

  40. Pushkareva, V.I., Didenko, L.V., Godova, G.V., et al., Interaction of Listeria monocytogenes with agricultural plants and formation of biofilms, Epidemiol. Vaktsinoprofil., 2013, no. 1, pp. 42–49.

  41. Pushkareva, V.I., Didenko, L.V., and Ermolaeva, S.A., Interaction of Escherichia coli with the plants at the population and cell levels, Usp. Sovrem. Biol., 2015, vol. 135, no. 3, pp. 297–306.

    Google Scholar 

  42. Pushkareva, V.I., Slezina, M.P., Korostyleva, T.V., et al., Antimicrobial activity of wild plant seed extracts against human bacterial and plant fungal pathogens, Am. J. Plant Sci., 2017, vol. 8, pp. 1572–1592.

    Article  CAS  Google Scholar 

  43. Rath, S.H. and Radhy, R.N., Antibacterial efficacy of five medicinal plants against multidrug-resistant enteropathogenic bacteria infecting under 5 hospitalized children, J. Integr. Med., 2015, vol. 13, pp. 45–57.

    Article  Google Scholar 

  44. Savoia, D., Plant-derived antimicrobial compounds: alternatives to antibiotics, Future Microbiol., 2012, pp. 979–990.

  45. Schikora, A., Garcia, A.V., and Hirt, H., Plants as alternative hosts for Salmonella,Trends Plant Sci., 2012, vol. 17, no. 5, pp. 245–249.

    Article  CAS  Google Scholar 

  46. Solokhina, L.V., Pushkareva, V.I., and Litvin, V.Yu., Formation of resting forms and variability of Yersinia pseudotuberculosis affected by blue-green algae (cyanobacteria) and their exometabolites, Zh. Mikrobiol., Epidemiol. Immunobiol., 2001, no. 3, pp. 17–22.

  47. Somov, G.P., Dal’nevostochnaya akrlatinopodobnaya likhoradka (Far Eastern Scarlet-Like Fever), Moscow: Meditsina, 1979.

  48. Somov, G.P. and Buzoleva, L.S., Adaptatsiya patogennykh bakterii k abioticheskim faktoram okruzhayushchei sredy (Adaptation of Pathogenic Bacteria to Abiotic Environmental Factors), Vladivostok: Primpoligrafkomb, 2004.

  49. Somov, G.P. and Litvin, V.Yu. Saprofitizm i parazitizm patogennykh bakterii (Saprophytism and Parasitism of Pathogenic Bacteria), Novosibirsk: Nauka, 1988.

  50. Somov, G.P., Pokrovskii, V.I., Besednova, N.N., and Antonenko, F.F., Psevdotuberkulez (Pseudotuberculosis), Moscow: Meditsina, 2001.

    Google Scholar 

  51. Soni, S. and Soni, U.N., In vitro anti-bacterial and anti-fungal activity of select essential oils, Int. J. Pharm. Pharm. Sci., 2014, vol. 6, pp. 586–591.

    Google Scholar 

  52. Terskikh, V.I., Sapronoses: about diseases of people and animals caused by microbes reproducing out of the organism in the external environment (their habitat), Zh. Mikrobiol., Epidemiol. Immunobiol., 1958, no. 8, pp. 118–122.

  53. The European Union Summary Report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2011, EFSA J., 2013, vol. 11, no. 5, pp. 1–485.

  54. Timchenko, N.F., Bulgakov, V.P., Bulakh (Persiyanova), E.V., et al., Interaction of Yersinia, Listeria, and Salmonella with the plant cells, Zh. Mikrobiol., Epidemiol. Immunobiol., 2000, no. 1, pp. 6–10.

  55. Tyler, H.L. and Triplett, E.W., Plants as a habitat for beneficial and/or human pathogenic bacteria, Ann. Rev. Phytopathol., 2008, vol. 46, pp. 53–73.

    Article  CAS  Google Scholar 

  56. Valeru, S.P., Wai, S.N., Saeed, A., et al., ToxR of Vibrio cholerae affects biofilm, rugosity and survival with Acanthamoeba castellanii,BMC Res. Notes, 2012, vol. 16, pp. 5–33.

    Google Scholar 

  57. Watanabe, Y., Ozasa, K., Mermin, J.H., et al., Factory outbreak of Escherichia coli O157:H7 infection in Japan, Emerging Infect. Dis., 1999, vol. 5, pp. 123–153.

    Article  Google Scholar 

  58. WHO Estimates of the Global Burden of Foodborne Diseases, Geneva: World Health Org., 2015.

  59. Witkowska, A.M., Hickey, D.K., Alonso-Gomes, M., and Wilkinson, M., Evaluation of commercial herb and spice extract against selected food-borne bacteria, J. Food Res., 2013, vol. 2, pp. 37–54.

    Article  Google Scholar 

  60. Ymele-Leki, P., Houot, L., and Watnik, P., Mannitol and the mannitol-specific enzyme IIB subunit activate Vibrio cholerae biofilm formation, Appl. Environ. Microbiol., 2013, vol. 79, no. 15, pp. 4675–4683.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Pushkareva.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest.

Statement on the welfare of animals. This article does not contain any studies involving animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pushkareva, V.I. Bacterial Pathogens: Migration from Environmental Reservoirs to Human Host. Biol Bull Rev 10, 150–157 (2020). https://doi.org/10.1134/S2079086420020073

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079086420020073

Keywords:

Navigation