Skip to main content
Log in

Structure and Trophic Relations in Hypersaline Environments

  • Published:
Biology Bulletin Reviews Aims and scope Submit manuscript

Abstract

Hypersaline waters with a salinity exceeding 35 g/L are widely distributed on the planet (hypersaline lakes and lagoons, deep-water “lakes,” and pore waters of sea ice) and are among the most extreme habitats on Earth. The present work analyzes and summarizes the results of long-term research on hypersaline lake and lagoon ecosystems in the Crimea, along with the literature data. The analysis shows that these extreme ecosystems are unique in terms of the physical and chemical parameters and processes, as well as the structure and functioning of the biota inhabiting them. In particular, salinity affects the freezing and boiling points of water. Thus, water remains liquid in a hypersaline environment, and life can exist in a wider temperature range than in fresh and sea waters, e.g., from –35 to 109°С at a salinity of 350 g/L. With a salinity increase, the species diversity sharply declines in eukaryotic organisms and grows in prokaryotes. The energy supply to ecosystems in freshwater and marine ecosystems is primarily ensured by oxygenic photosynthesis, while that in hypersaline waters comes from three phototrophic and a variety of chemosynthetic mechanisms. Thus, for example, anoxygenic photosynthesis may result in 50% or more energy (up to 85%) in an ecosystem, and its share in the total primary production increases with increases in salinity higher than 100–160 g/L. Despite the extreme nature of the environment, the majority of hypersaline waterbodies are highly productive. This paradox can be explained by two factors: the commonly high concentrations of nutrients in hypersaline waters and the high, small-scale, spatiotemporal variability of abiotic factors in such waterbodies, which allows for the interaction of oppositely directed processes to close nutrient cycles within one community. In response to high salinity and its sharp fluctuations, the osmoregulation mechanisms of primary producers include release into the environment of exopolysaccharides, the amount of which increases with salinity and can account for 50–70% of the primary production. This leads to an increased role of heterotrophic osmotrophs in food webs. Further insight into hypersaline ecosystem may expand our understanding of the organization of life in an extreme environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Alimov, A.F., Relations between biological diversity in continental waterbodies and their morphometry and water mineralization, Inland Water Biol., 2008, vol. 1, no. 1, pp. 1–6.

    Article  Google Scholar 

  2. Anufriieva, E.V., Do copepods inhabit hypersaline waters worldwide? A short review and discussion, Chin. J. Oceanol. Limnol., 2015, vol. 33, no. 6, pp. 1354–1361.

    Article  CAS  Google Scholar 

  3. Anufriieva, E.V., Cyclopoida in hyperhaline reservoirs of Crimea and the World: diversity, impact of environmental factors, and ecological role, Zh. Sib. Fed. Univ.,Ser. Biol., 2016, vol. 9, no. 4, pp. 398–408.

    Google Scholar 

  4. Anufriieva, E.V. and Shadrin, N.V., Morphometric variability of Arctodiaptomus salinus (Copepoda) in the Mediterranean-Black Sea region, Zool. Res., 2015, vol. 36, no. 6, pp. 328–336.

    Google Scholar 

  5. Anufriieva, E.V., Shadrin, N.V., and Shadrina, S.N., History of research on biodiversity in Crimean hypersaline waters, Arid Ecosyst., 2017, vol. 7, no. 1, pp. 52–58.

    Article  Google Scholar 

  6. Asencio, A.D., Permanent salt evaporation ponds in a semi-arid Mediterranean region as model systems to study primary production processes under hypersaline conditions, Estuarine, Coastal Shelf Sci., 2013, vol. 124, pp. 24–33.

    Article  CAS  Google Scholar 

  7. Atanasova, N.S., Roine, E., Oren, A., Bamford, D.H., and Oksanen, H.M., Global network of specific virus–host interactions in hypersaline environments, Environ. Microbiol., 2012, vol. 14, no. 2, pp. 426–440.

    Article  PubMed  CAS  Google Scholar 

  8. Balushkina, E.V., Golubkov, S.M., Golubkov, M.S., Litvinchuk, L.F., and Shadrin, N.V., Effect of abiotic and biotic factors on structural-functional organization of ecosystems of saline lakes of Crimea, Zh. Obshch. Biol., 2009, vol. 70, no. 6, pp. 504–514.

    PubMed  CAS  Google Scholar 

  9. Beisner, B.E., Haydon, D.T., and Cuddington, K., Alternative stable states in ecology, Front. Ecol. Environ., 2003, vol. 1, no. 7, pp. 376–382.

    Article  Google Scholar 

  10. Belovsky, G.E., Stephens, D., Perschon, C., Birdsey, P., Paul, D., Naftz, D., Baskin, R., Larson, C., Mellison, C., Luft, J., Mosley, R., Mahon, H., van Leeuwen, J., and Allen, D.V., The Great Salt Lake ecosystem (Utah, USA): long term data and a structural equation approach, Ecosphere, 2011, vol. 2, no. 3, pp. 1–40.

    Article  Google Scholar 

  11. Chen, H. and Jiang, J.G., Osmotic responses of Dunaliella to the changes of salinity, J. Cell. Physiol., 2009, vol. 219, no. 2, pp. 251–258.

    Article  PubMed  CAS  Google Scholar 

  12. Cohen, Y., Krumbein, W.E., Goldberg, M., and Shilo, M., Solar lake (Sinai). 1. Physical and chemical limnology, Limnol. Oceanogr., 1977a, vol. 22, no. 4, pp. 597–608.

    Article  CAS  Google Scholar 

  13. Cohen, Y., Krumbein, W.E., and Shilo, M., Solar Lake (Sinai). 2. Distribution of photosynthetic microorganisms and primary production, Limnol. Oceanogr., 1977b, vol. 22, no. 4, pp. 609–620.

    Article  CAS  Google Scholar 

  14. Danil’chenko, P.T. and Ponizovskii, A.M., Gidrokhimiya Sivasha (Hydrochemistry of Sivash Lake), Moscow: Akad. Nauk SSSR, 1954.

  15. Detkova, E.N. and Boltyanskaya, Yu.V., Osmoadaptation of haloalkaliphilic bacteria: role of osmoregulators and their possible practical application, Microbiology (Moscow), 2007, vol. 76, no. 5, pp. 511–522.

    Article  CAS  Google Scholar 

  16. Drapun, I., Anufriieva, E., Shadrin, N., and Zagorodnyaya, Y., Ostracods in the plankton of the Sivash Bay (the Sea of Azov) during its transformation from brackish to hypersaline state, Ecol. Montenegrina, 2017, vol. 14, pp. 102–108.

    Google Scholar 

  17. Edgcomb, V., Orsi, W., Leslin, C., Epstein, S.S., Bunge, J., Jeon, S., and Stoeck, T., Protistan community patterns within the brine and halocline of deep hypersaline anoxic basins in the eastern Mediterranean Sea, Extremophiles, 2009, vol. 13, no. 1, pp. 151–167.

    Article  PubMed  Google Scholar 

  18. Elloumi, J., Guermazi, W., Ayadi, H., Bouain, A., and Aleya, L., Abundance and biomass of prokaryotic and eukaryotic microorganisms coupled with environmental factors in an arid multi-pond solar saltern (Sfax, Tunisia), J. Mar. Biol. Assoc. U.K., 2009, vol. 89, no. 2, pp. 243–253.

    Article  Google Scholar 

  19. Emerson, J.B., Andrade, K., Thomas, B.C., Norman, A., Allen, E.E., Heidelberg, K.B., and Banfield, J.F., Virus-host and CRISPR dynamics in Archaea-dominated hypersaline Lake Tyrrell, Victoria, Australia, Archaea, 2013, vol. 2013, p. 370871. https://doi.org/10.1155/2013/370871

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Esteban, G.F. and Finlay, B.J., Cryptic freshwater ciliates in a hypersaline lagoon, Protist, 2003, vol. 154, nos. 3–4, pp. 411–418.

    Article  PubMed  Google Scholar 

  21. Gerasimenko, L.M., Nekrasova, V.K., Orleanskii, V.K., Venetskaya, S.Ya., and Zavarzin, G.A., Primary production of halophilic cyanobacterial communities, Mikrobiologiya (Moscow), 1989, vol. 58, no. 3, pp. 507–514.

    Google Scholar 

  22. Goh, F., Barrow, K.D., Burns, B.P., and Neilan, B.A., Identification and regulation of novel compatible solutes from hypersaline stromatolite-associated cyanobacteria, Arch. Microbiol., 2010, vol. 192, no. 12, pp. 1031–1038.

    Article  PubMed  CAS  Google Scholar 

  23. Golubkov, S., Kemp, R., Golubkov, M., Balushkina, E., Litvinchuk, L., and Gubelit, Y., Biodiversity and the functioning of hypersaline lake ecosystems from Crimea Peninsula (Black Sea), Arch. Hydrobiol., 2007, vol. 169, no. 1, pp. 79–87.

    Article  Google Scholar 

  24. Hammer, U.T., Primary production in saline lake. A review, Hydrobiology, 1981, vol. 81, pp. 47–57.

    Article  Google Scholar 

  25. Ivanova, M., Balushkina, E., and Basova, S., Structural functional reorganization of ecosystem of hyperhaline Lake Saki (Crimea) at increased salinity, Russ. J. Aquat. Ecol., 1994, vol. 3, no. 2, pp. 111–126.

    Google Scholar 

  26. Ivlev, V.S., Experimental Ecology of the Feeding of Fishes, New Haven: Yale Univ. Press, 1961.

    Google Scholar 

  27. Ivlev, V.S., Heterotrophic part of the production process, Tr. Sevastop. Biol. Stn.,Akad. Nauk Ukr. SSR, 1964, vol. 15, pp. 460–471.

    Google Scholar 

  28. Jellison, R. and Melack, J.M., Photosynthetic activity of phytoplankton and its relation to environmental factors in hypersaline Mono Lake, California, Hydrobiologia, 1988, vol. 158, no. 1, pp. 69–88.

    Article  CAS  Google Scholar 

  29. Jia, Q., Anufriieva, E., Liu, X., Kong, F., and Shadrin, N., Intentional introduction of Artemia sinica (Anostraca) in the high-altitude Tibetan Lake Dangxiong Co: the new population and consequences for the environment and for humans, Chin. J. Oceanol. Limnol., 2015, vol. 33, pp. 1451–1460.

    Article  CAS  Google Scholar 

  30. Joint, I., Henriksen, P., Garde, K., and Riemann, B., Primary production, nutrient assimilation and microzooplankton grazing along a hypersaline gradient, FEMS Microbiol. Ecol., 2002, vol. 39, no. 3, pp. 245–257.

    Article  PubMed  CAS  Google Scholar 

  31. Khlebovich, V.V., Critical salinity–homeostasis–sustainable development, Tr. Zool. Inst., Ross. Akad. Nauk, 2013, no. 3, pp. 3–6.

  32. Kokkinn, M.J., Osmoregulation, salinity tolerance and the site of ion excretion in the halobiont chironomid, Tanytarsus barbitarsis Freeman, Aust. J. Mar. Freshwater Res., 1986, vol. 37, pp. 243–250.

    Article  Google Scholar 

  33. Kolesnikova, E.A., Mazlumyan, S.A., and Shadrin, N.V., Seasonal dynamics of meiobenthos fauna from a salt lake of the Crimea, Proc. Firth Int. Conf. on Environmental Micropaleontology, Microbiology and Meiobenthology (EMMM), Chennai, 2008, pp. 155–158.

  34. Kopylov, A.I. and Kosolapov, D.B., Mikrobnaya “petlya” v planktonnykh soobshchestvakh morskikh i presnovodnykh ekosistem (Microbial Loop in Planktonic Communities of Marine and Freshwater Ecosystems), Izhevsk: KnigoGrad, 2011.

  35. Kotlova, E.R. and Shadrin, N.V., Involvement of membrane lipids in adaptation of Cladophora (Chlorophyta) to the shallow lakes with different salinity degree, Bot. Zh., 2003, vol. 88, no. 5, pp. 38.

    CAS  Google Scholar 

  36. Kurnakov, N.S., Kuznetsov, V.G., Dzens-Litovskii, A.I., and Ravich, M.I., Solyanye ozera Kryma (Saline Lakes of Crimea), Moscow: Akad. Nauk SSSR, 1936.

  37. Mikhodyuk, O.S., Gerasimenko, L.M., Venetskaya, Yu.Yu., and Shadrin, N.V., Anoxygenic photosynthesis in plankton of the Crimean saline lakes: first evaluation, Morsk. Ekol. Zh., 2008, vol. 7, no. 3, p. 50.

    Google Scholar 

  38. Mishra, A. and Jha, B., Isolation and characterization of extracellular polymeric substances from micro-algae Dunaliella salina under salt stress, Bioresour. Technol., 2009, vol. 100, no. 13, pp. 3382–3386.

    Article  PubMed  CAS  Google Scholar 

  39. Moscatello, S. and Belmonte, G., Zooplankton species composition and seasonal evolution in a hypersaline temporary pond of the Mediterranean coast (the “Vecchia Salina”, Torre Colimena, SE Italy), Sci. Mar., 2004, vol. 68, suppl. 1, pp. 85–102.

    Google Scholar 

  40. Mukhanov, V.S., Naidanova, O.G., Shadrin, N.V., and Kemp, R.B., The spring energy budget of the algal mat community in a Crimean hypersaline lake determined by microcalorimetry, Aquat. Ecol., 2004, vol. 38, no. 3, pp. 375–385.

    Article  Google Scholar 

  41. Oren, A., Saltern evaporation ponds as model systems for the study of primary production processes under hypersaline conditions, Aquat. Microb. Ecol., 2009, vol. 56, nos. 2–3, pp. 193–204.

    Article  Google Scholar 

  42. Oren, A., Thermodynamic limits to microbial life at high salt concentrations, Environ. Microbiol., 2011, vol. 13, no. 8, pp. 1908–1923.

    Article  PubMed  CAS  Google Scholar 

  43. Pavlovskaya, T.M., Prazukin, A.V., and Shadrin, N.V., Seasonal changes in the community of ciliates from hyperhaline Lake Khersonesskoe (Crimea), Morsk. Ekol. Zh., 2009, vol. 8, no. 2, pp. 53–63.

    Google Scholar 

  44. Pedrós-Alió, C., Calderón-Paz, J.I., MacLean, M.H., Medina, G., Marrasé, C., Gasol, J.M., and Guixa-Boixereu, N., The microbial food web along salinity gradients, FEMS Microbiol. Ecol., 2000, vol. 32, no. 2, pp. 143–155.

    Article  PubMed  Google Scholar 

  45. Pinder, A.M., Halse, S.A., McRae, J.M., and Shiel, R.J., Occurrence of aquatic invertebrates of the wheatbelt region of Western Australia in relation to salinity, Hydrobiologia, 2005, vol. 543, no. 1, pp. 1–24.

    Article  Google Scholar 

  46. Ponizovskii, A.M., Solyanye resursy Kryma (Salt Resources of Crimea), Simferopol: Krym, 1965.

  47. Por, F.D., A classification of hypersaline waters based on trophic criteria, Mar. Ecol., 1980, vol. 1, no. 2, pp. 121–131.

    Article  Google Scholar 

  48. Post, F.J., Borowitzka, L.J., Borowitzka, M.A., Mackay, B., and Moulton, T., The protozoa of Western Australian hypersaline lagoon, Hydrobiologia, 1983, vol. 105, no. 1, pp. 95–113.

    Article  Google Scholar 

  49. Prazukin, A.V., Bobkova, A.N., Evstigneeva, I.K., Tankovskaya, I.N., and Shadrin, N.V., The structure and seasonal dynamics of the phytocomponents of the nonliving system of the marine hypersaline lake at Cape Khersones (Crimea), Morsk. Ekol. Zh., 2008, vol. 7, no. 1, pp. 61–79.

    Google Scholar 

  50. Rippingale, R.J. and Hodgkin, E.P., Food availability and salinity tolerance in a brackish water copepod, Mar. Freshwater Res., 1977, vol. 28, no. 1, pp. 1–7.

    Article  Google Scholar 

  51. Rossi, F. and De Philippis, R., Role of cyanobacterial exopolysaccharides in phototrophic biofilms and in complex microbial mats, Life, 2015, vol. 5, no. 2, pp. 1218–1238.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Schagerl, M., Soda Lakes of East Africa, New York: Springer-Verlag, 2016.

    Book  Google Scholar 

  53. Senicheva, M.I., Gubelit, Yu.I., Prazukin, A.V., and Shadrin, N.V., Phytoplankton of hyperhaline lakes of Crimea, in Mikrovodorosli Chernogo morya: problemy sokhraneniya bioraznoobraziya i biotekhnologicheskogo ispol’zovaniya (The Black Sea Microalgae: Biodiversity Conservation and Biotechnological Use), Sevastopol: EKOSI-Gidrofizika, 2008, pp. 93–99.

  54. Shadrin, N.V., Is it possible to quantitatively assess the role of algobacterial films in a water body? in Fossil and Recent Biofilms, New York: Springer-Verlag, 2003, pp. 353–361.

    Google Scholar 

  55. Shadrin, N.V., Dynamics of ecosystems and evolution: multiplicity of steady states and the points of rollover/non-return. New concept, Morsk. Ekol. Zh., 2012, vol. 11, no. 2, pp. 85–95.

    Google Scholar 

  56. Shadrin, N.V., Alternative steady states of lake ecosystems and critical salinity: is there a particular relation? Tr. Zool. Inst.,Ross. Akad. Nauk, 2013, suppl. 3, pp. 214–221.

  57. Shadrin, N., Alternative states of saline lake ecosystems and development of salinology, Acta Geol. Sin. (Engl. Ed.), 2014, vol. 88, suppl. 1, pp. 434–435.

    Article  Google Scholar 

  58. Shadrin, N.V., Hypersaline lakes as polyextreme habitats for life, in Introduction to Salt Lake Sciences, Beijing: Science Press, 2018, pp. 180–187.

  59. Shadrin, N.V. and Anufriieva, E.V., Climate change impact on the marine lakes and their Crustaceans: The case of marine hypersaline Lake Bakalskoye (Ukraine), Turk. J. Fish. Aquat. Sci., 2013a, vol. 13, pp. 603–611.

    Article  Google Scholar 

  60. Shadrin, N.V. and Anufriieva, E.V., Dependence of Arctodiaptomus salinus (Calanoida, Copepoda) halotolerance on exoosmolytes: new data and a hypothesis, J. Medit. Ecol., 2013b, vol. 12, pp. 21–26.

    Google Scholar 

  61. Shadrin, N.V. and Naidanova, O.G., Bottom cyanobacteria in continental hyperhaline lakes of Crimea: preliminary report, Ekol. Morya, 2002, no. 61, pp. 36–38.

  62. Shadrin, N.V., Mikhodyuk, O.S., Naidanova, O.G., Voloshko, L.N., and Gerasimenko, L.M., Hypersaline lakes of Crimea: general features, in Mikrovodorosli Chernogo morya: problemy sokhraneniya bioraznoobraziya i biotekhnologicheskogo ispol’zovaniya (The Black Sea Microalgae: Biodiversity Conservation and Biotechnological Use), Sevastopol: EKOSI-Gidrofizika, 2008, pp. 100–112.

  63. Shadrin, N., Zheng, M., and Oren, A., Past, present, and future of saline lakes: research for global sustainable development, Chin. J. Oceanol. Limnol., 2015, vol. 33, no. 6, pp. 1349–1353.

    Article  Google Scholar 

  64. Shadrin, N.V., Sergeeva, N.G., Latushkin, A.A., Kolesnikova, E.A., Kipriyanova, L.A., Anufriieva, E.V., and Chepyzhenko, A.A., Transformation of the Sivash Bay (Sea of Azov) in increasing salinity: change of meiobenthos and other ecosystem components (2013–2015), Zh. Sib. Fed. Univ.,Ser. Biol., 2016, vol. 9, no. 4, pp. 452–466.

    Google Scholar 

  65. Shadrin, N.V., Anufriieva, E.V., and Shadrina, S.N., Brief review of phototrophs of hypersaline lakes and lagoons of Crimea: diversity, ecological role, and possible use, Morsk. Biol. Zh., 2017a, vol. 2, no. 2, pp. 80–85.

    Google Scholar 

  66. Shadrin, N.V., Anufriieva, E.V., Belyakov, V.P., and Bazhora, A.I., Chironomidae larvae in hypersaline waters of the Crimea: diversity, distribution, abundance and production, Eur. Zool. J., 2017b, vol. 84, pp. 61–72.

    Article  CAS  Google Scholar 

  67. Steele, D.J., Franklin, D.J., and Underwood, G.J., Protection of cells from salinity stress by extracellular polymeric substances in diatom biofilms, Biofouling, 2014, vol. 30, no. 8, pp. 987–998.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Stoecker, D.K., Gustafson, D.E., Baier, C.T., and Black, M.M., Primary production in the upper sea ice, Aquat. Microb. Ecol., 2000, vol. 21, no. 3, pp. 275–287.

    Article  Google Scholar 

  69. Swanson, C., Interactive effects of salinity on metabolic rate, activity, growth and osmoregulation in the euryhaline milkfish (Chanos chanos), J. Exp. Biol., 1998, vol. 201, no. 24, pp. 3355–3366.

    PubMed  Google Scholar 

  70. Thomas, D.N. and Dieckmann, G.S., Antarctic sea ice a habitat for extremophiles, Science, 2002, vol. 295, no. 5555, pp. 641–644.

    Article  PubMed  CAS  Google Scholar 

  71. Vasil’eva, L.V., Berestovskaya, Yu.Yu., Samylina, O.S., Gerasimenko, L.M., and Shadrin, N.V., Seasonal changes of heterotrophic bacterioplankton in saline lakes of Crimea, Morsk. Ekol. Zh., 2008, vol. 7, no. 40, p. 40.

    Google Scholar 

  72. Wang, J., Yang, D., Zhang, Y., Shen, J., van der Gast, C., Hahn, M.W., and Wu, Q., Do patterns of bacterial diversity along salinity gradients differ from those observed for macroorganisms? PLoS One, 2011, vol. 6, no. 11, p. e27597.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Williams, W.D., Salinity as a determinant of the structure of biological communities in salt lakes, Hydrobiologia, 1998, vol. 381, no. 1, pp. 191–201.

    Article  Google Scholar 

  74. Wurtsbaugh, W.A. and Berry, T.S., Cascading effects of decreased salinity on the plankton chemistry, and physics of the Great Salt Lake (Utah), Can. J. Fish. Aquat. Sci., 1990, vol. 47, no. 1, pp. 100–109.

    Article  CAS  Google Scholar 

  75. Zagorodnyaya, Yu.A., Batogova, E.A., and Shadrin, N.V., Long-term transformations of plankton in hyperhaline the Baikal’skoe Lake (Crimea) in salinity gradient, Morsk. Ekol. Zh., 2008, vol. 7, no. 4, pp. 41–50.

    Google Scholar 

  76. Zavarzin, G.A., Lektsii po prirodovedcheskoi mikrobiologii (Lectures on Nature Microbiology), Moscow: Nauka, 2004.

  77. Zhang, R., Wu, Q., Piceno, Y.M., Desantis, T.Z., Saunders, F.M., Andersen, G.L., and Liu, W.T., Diversity of bacterioplankton in contrasting Tibetan lakes revealed by high-density microarray and clone library analysis, FEMS Microbiol. Ecol., 2013, vol. 86, no. 2, pp. 277–287.

    Article  PubMed  CAS  Google Scholar 

  78. Zheng, M., Saline Lakes and Salt Basin Deposits in China, Beijing: Science Press, 2014.

    Google Scholar 

Download references

Funding

This manuscript writing was conducted in the framework of the state assignment of the Kovalevsky Institute of Biology of the Southern Seas, Russian Academy of Sciences (project no. AAAAA19-119100790153-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Shadrin.

Ethics declarations

Conflict of interest. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Translated by E. Kuznetsova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shadrin, N.V., Anufriieva, E.V. Structure and Trophic Relations in Hypersaline Environments. Biol Bull Rev 10, 48–56 (2020). https://doi.org/10.1134/S2079086420010065

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079086420010065

Navigation