Skip to main content
Log in

Oxygen Regime of Skeletal Muscles in Teleost Fishes and the Mechanisms of Its Functional Correction (Short Review)

  • Published:
Biology Bulletin Reviews Aims and scope Submit manuscript

Abstract

The data on the tension and diffusion of oxygen in the skeletal muscles of bony fish are summarized. The methods of the recording and calculation of these traits are compared. It is noted that oxygen diffusion in the skeletal muscles of bony fish is more complicated process than that in higher vertebrates. This process is supposed to be restrained by the membrane structures of muscle tissue cells. Particular attention is paid to the oxygen tension in arterial and venous blood and to the mechanisms of their functional correction. It is shown that the mentioned processes are governed by the humoral and neural control of gill blood flow, along with respiratory and cardiac activity. The contribution of receptors that are sensitive to oxygen and CO2 to the regulation of these functions is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Agnisola, C., Jensen, F.B., Tota, B., and Mustafa, T., Performance of the isolated rainbow trout heart perfused under self-controlled coronary pressure conditions: effects of high and low oxygen tension, arachidonic acid and indomethacin, J. Comp. Physiol. B, 1998, vol. 168, no. 2, pp. 96–104.

    Article  CAS  Google Scholar 

  2. Andreev, A.A., Kolupaev, B.I., and Karpovich, T.A., The effect of phenol on oxygen tension in muscle tissue of Siberian roach Rutilus rutilus lacustris P., Vopr. Ikhtiol., 1979, vol. 19, no. 3, pp. 564–566.

    CAS  Google Scholar 

  3. Bailey, J.R., Sephton, D.H., and Driedzic, W.R., Oxygen uptake by isolated perfused fish hearts with differing myoglobin concentration under hypoxic conditions, J. Mol. Cell. Cardiol., 1990, vol. 22, no. 10, pp. 1125–1134.

    Article  PubMed  CAS  Google Scholar 

  4. Baranov, V.I., Oxygen intake by red and white muscle fibers in Baikal black grayling and their diffusion coefficient, in Bioenergetika i termodinamika zhivykh sistem (Bioenergy and Thermodynamics of Living Systems), Novosibirsk: Nauka, 1984, pp. 77–80.

  5. Barrett, D.J. and Taylor, E.W., Changes in heart rate during progressive hyperoxia in the dogfish Scyliorhinus canicula L.: evidence for a venous oxygen receptor, Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol., 1984, vol. 78, no. 4, pp. 697–703.

    Article  CAS  Google Scholar 

  6. Barrett, D.J., Robert, B.L., and Taylor, E.W., Evidence for the existence of a venous oxygen receptor in the elasmobranch fish Scyliorhinus canicula L., J.Physiol. (Oxford), 1983, vol. 338, pp. 53–54.

    Google Scholar 

  7. Bath, R.N. and Eddy, F.B., Ionic and respiratory regulation in rainbow trout during rapid transfer to seawater, J. Comp. Physiol. B, 1979, vol. 134, no. 4, pp. 351–357.

    Article  CAS  Google Scholar 

  8. Berezovskii, V.A., Napryazhenie kisloroda v tkanyakh zhivotnykh i cheloveka (Oxygen Tension in Tissues of the Animals and Men), Kiev: Naukova Dumka, 1975.

  9. Berezovskii, V.A. and Sushko, B.S., The profile of oxygen concentration in the cell and some controversial issues of free oxygen transfer in biological objects, Fiziol. Zh., 1984, vol. 30, no. 3, pp. 345–355.

    PubMed  CAS  Google Scholar 

  10. Bickler, P.E. and Buck, L.T., Hypoxia tolerance in reptiles, amphibians, and fishes: life with variable oxygen availability, Ann. Rev. Physiol., 2007, vol. 69, pp. 145–170.

    Article  CAS  Google Scholar 

  11. Bidinotto, P.M., Moraes, G., and Souza, R.H.S., Hepatic glycogen and glucose in eight tropical freshwater teleost fish: a procedure for field determinations of micro samples, Bol. Tec. CEPTA, 1997, vol. 10, pp. 53–60.

    Google Scholar 

  12. Burggren, W.W. and Randall, D.J., Oxygen uptake and transport during hypoxia exposure in the sturgeon Acipenser transmontanus,Respir. Physiol., 1978, vol. 34, no. 2, pp. 171–183.

    Article  PubMed  CAS  Google Scholar 

  13. Burleson, M.L. and Smatresk, N.J., Branchial chemoreceptors mediate ventilatory responses to hypercapnic acidosis in channel catfish, Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol., 2000, vol. 125, no. 3, pp. 403–414.

    Article  CAS  Google Scholar 

  14. Butler, D.J. and Day, N., The relationship between intracellular pH and seasonal temperature in the brown trout, Salmo trutta,J. Exp. Biol., 1993, vol. 177, pp. 293–297.

    Google Scholar 

  15. Cech, J.J., Rowell, D.M., and Glasgow, J.S., Cardiovascular responses of the winter flounder Pseudopleuronectes americanus to hypoxia, Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol., 1977, vol. 57, no. 1, pp. 123–125.

    Article  Google Scholar 

  16. Chen, H., Li, D., Roberts, G.J., Saldeen, T., and Mehta, J.L., Eicosapentanoic acid inhibits hypoxia-reoxygenation-induced injury by attenuating upregulation of MMP-1 in adult rat myocytes, Cardiovasc. Res., 2003, vol. 59, no. 1, pp. 7–13.

    Article  PubMed  CAS  Google Scholar 

  17. Chew, S.F., Gan, J., and Ip, Y.K., Nitrogen metabolism and excretion in the swamp eel, Monopterus albus, during 6 or 40 days of estivation in mud, Physiol. Biochem. Zool., 2005, vol. 78, no. 4, pp. 620–629.

    Article  PubMed  CAS  Google Scholar 

  18. Coleman, G., Fyfe, L., and Munro, A.L.S., Aeromonas salmonicida (the causative agent of furunculosis) extracellular virulence factors—the common components, Proc. ICES Council Meeting, October 9, 1986, Copenhagen: Int. Counc. Explor. Sea, 1986.

  19. Crocker, C.E. and Cech, J.J., Effects of hypercapnia on blood-gas and acid-base states in the white sturgeon, Acipenser transmontanus,J. Comp. Physiol. B, 1998, vol. 198, pp. 50–60.

    Article  Google Scholar 

  20. D’Amico-Martel, A.L. and Cech, J.J., Peripheral vascular resistance in the gills of the winter flounder Pseudopleuronectes americanus, Comp. Biochem. Physiol., Part A:Mol. Integr. Physiol., 1978, vol. 59, no. 4, pp. 419–423.

    Google Scholar 

  21. De Salvo Souza, R.H., Soncini, R., Glass, M.L., Sanches, J.R., and Rantin, F.T., Ventilation, gill perfusion and blood gases in dourado, Salminus maxillosus Valenciennes (Teleostei, Characidae), exposed to graded hypoxia, J. Comp. Physiol. B, 2001, vol. 171, no. 6, pp. 483–489.

    Article  PubMed  CAS  Google Scholar 

  22. Don, S.E., Oxygen molecules as units to dimension the sieve of fish gills, Environ. Biol. Fish., 1992, vol. 33, pp. 317–318.

    Article  Google Scholar 

  23. Dubes, S.C. and Datta, M.J., Diffusing capacity of gills of the climbing perch, Anabas testudineus (Bloch) in relation to body size, Indian J. Exp. Biol., 1974, vol. 12, no. 2, pp. 207–208.

    Google Scholar 

  24. Egginton, S., Stress response in two Antarctic teleosts (Notothenia coriiceps Rich. and Chaenocephalus aceratus L.) following capture and surgery, J. Comp. Physiol. B, 1994, vol. 164, no. 5, pp. 482–491.

    Article  Google Scholar 

  25. El-Shafey, A.A.M., Effect of ammonia on respiratory functions of blood of Tilapia zilli, Comp. Biochem. Physiol., Part A:Mol. Integr. Physiol., 1998, vol. 121, no. 4, pp. 305–313.

    Article  Google Scholar 

  26. Fanta, E., Lucchiari, P.H., and Bacila, M., The effect of environmental oxygen and carbon dioxide levels on the tissue oxygenation and the behavior of Antarctic fish, Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol., 1989, vol. 93, no. 4, pp. 819–831.

    Article  Google Scholar 

  27. Farrell, A.P., Cardiorespiratory performance in salmonids during exercise at high temperature: insights into cardiovascular design limitations in fishes (review), Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol., 2002, vol. 132, no. 4, pp. 797–810.

    Article  CAS  Google Scholar 

  28. Farrell, A.P. and Clutterham, S.M., On-line venous oxygen tensions in rainbow trout during graded exercise at two acclimation temperatures, J. Exp. Biol., 2003, vol. 206, pp. 487–496.

    Article  PubMed  CAS  Google Scholar 

  29. Florindo, L.H., Leite, C.A.C., Kalinin, A.L., Reid, S.G., Milsom, W.K., and Rantin, F.T., The role of branchial and orobranchial O2 chemoreceptors in the control of aquatic surface respiration in the neotropical fish tambaqui (Colossoma macropomum): progressive responses to prolonged hypoxia, J. Exp. Biol., 2006, vol. 209, pp. 1709–1715.

    Article  PubMed  Google Scholar 

  30. Fritsche, R., Thomas, S., and Perry, S.F., Effects of serotonin on circulation and respiration in the rainbow trout (Oncorhynchus mykiss), J. Exp. Biol., 1992, vol. 173, pp. 59–73.

    CAS  Google Scholar 

  31. Gamperl, A.K., Vijayan, M.M., Pereira, C., and Farrell, A.P., β-Receptors and stress protein 70 expression in hypoxic myocardium of rainbow trout and chinook salmon, Am. J. Physiol. Regul. Integr. Comp. Physiol., 1998, vol. 274, pp. 428–436.

    Article  Google Scholar 

  32. Garey, W.F. and Rahn, H., Gas tensions in tissues of trout and carp exposed to diurnal changes in oxygen tension of the water, J. Exp. Biol., 1970, vol. 52, no. 3, pp. 575–582.

    PubMed  CAS  Google Scholar 

  33. Hemmingsen, E.A. and Douglas, E.L., Respiratory and circulatory response in a hemoglobin-free fish, Chaenocephalus aceratus to changes in temperature and oxygen tension, Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol., 1972, vol. 43, no. 4, pp. 1031–1043.

    Article  CAS  Google Scholar 

  34. Hills, B.A., Hughes, G.M., and Koyama, T., Oxygenation and deoxygenation kinetics of red cells in isolated lamellae of fish gills, J. Exp. Biol., 1982, vol. 98, pp. 269–275.

    PubMed  CAS  Google Scholar 

  35. Ishimatsu, A. and Itazawa, Y., Blood oxygen levels and acid-base status following air exposure in an air-breathing fish, Channa argus: the role of air ventilation, Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol., 1983, vol. 74, no. 4, pp. 787–793.

    Article  CAS  Google Scholar 

  36. Ishimatsu, A., Aguilar, N.M., Ogawa, K., Hishida, Y., Takeda, T., Oikawa, Sh., Kanda, T., and Huat, K.-K., Arterial blood gas levels and cardiovascular function during varying environmental conditions in a mudskipper, Periophthalmodon schlosseri,J. Exp. Biol., 1999, vol. 202, no. 13, pp. 1753–1762.

    PubMed  Google Scholar 

  37. Iwama, G.K. Boutilier, R.G., Heming, T.A., Randall, D.J., and Mazeaud, M., The effects of altering gill water flow on gas transfer in rainbow trout, Can. J. Zool., 1987, vol. 65, no. 10, pp. 2466–2470.

    Article  Google Scholar 

  38. Jensen, F.B., Nikinmaa, M., and Weber, R.E., Effects of exercise stress on acid-base balance and respiratory function in blood of the teleost, Tinca tinca,Respir. Physiol., 1983, vol. 51, no. 3, pp. 291–301.

    Article  PubMed  CAS  Google Scholar 

  39. Johansen, K., Lenfant, C., and Hanson, D., Gas exchange in the lamprey, Entosphenus tridentatus, Comp. Biochem. Physiol., Part A:Mol. Integr. Physiol., 1973, vol. 44, no. 1, pp. 107–119.

    CAS  Google Scholar 

  40. Johnston, I.A. and Ball, D., Thermal stress and muscle function in fish, in Global Warming: Implications for Freshwater and Marine Fish, Society for Experimental Biology Seminar Series vol. 62, Cambridge: Cambridge Univ. Press, 1997, pp. 79–104.

    Google Scholar 

  41. Jones, D.R., Brill, R.W., and Mense, D.C., The influence of blood gas properties on gas tensions and pH of ventral and dorsal aortic blood in free-swimming tuna, Euthynnus affinis,J. Exp. Biol., 1986, vol. 120, pp. 201–213.

    Google Scholar 

  42. Kent, B., Levy, M., and Opdyke, M.B., Effect of acetylcholine on oxygen uptake in the gill of S. acanthias,Bull. Mt. Desert Island Biol. Lab., 1980, vol. 20, pp. 109–112.

    Google Scholar 

  43. Kinkead, R. and Perry, S.F., An investigation of the role of circulating catecholamines in the control of ventilation during acute moderate hypoxia in rainbow trout (Oncorhynchus mykiss), J. Comp. Physiol. B, 1990, vol. 160, no. 4, pp. 441–448.

    Article  CAS  Google Scholar 

  44. Kobayashi, H. and Yamahoto, K., Some aspects on oxygen and total carbon dioxide contents in blood of the yellowtail, Seriola guingueradiata,J. Shimonoseki Univ. Fish., 1977, vol. 25, no. 3, pp. 197–212.

    Google Scholar 

  45. Kolchinskaya, A.Z., Kislorodnye rezhimy organizma rebenka i podrostka (Oxygen Regimes of the Body of a Child and Adolescent), Kiev: Naukova Dumka, 1973.

  46. Kolchinskaya, A.Z., Kislorod. Fizicheskoe sostoyanie. Rabotosposobnost’ (Oxygen. Physical State. Work Performance), Kiev: Naukova Dumka, 1991.

  47. Kolchinskaya, A.Z., Man’kovskaya, I.N., and Misyura, A.G., Dykhanie i kislorodnye rezhimy orgnaizma del’finov (Respiration and Oxygen Regimes of the Dolphin Organism), Kiev: Naukova Dumka, 1980.

  48. Kolchinskaya, A.Z., Khatsukov, B.Kh., and Zakusilo, M.P., Kislorodnaya nedostatochnost’—destruktivnoe i konstruktivnoe deistvie (Oxygen Deficiency: Negative and Positive Effect), Nalchik: Kabard.-Balkar. Nauchn. Tsentr, Ross. Akad. Nauk, 1999.

  49. Koldkjaer-Knudsen, P. and Jensen, F.B., Effects of exhausting exercise and catecholamines on K+ balance, acid-base status and blood respiratory properties in carp, Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol., 1998, vol. 119, no. 1, pp. 301–307.

    Article  Google Scholar 

  50. Lai, N., Graham, J.B., and Burnett, L., Blood respiratory properties and the effect of swimming on blood gas transport in the leopard shark, Triakis semifasciata,J. Exp. Biol., 1990, vol. 151, pp. 161–173.

    Google Scholar 

  51. Lappivaara, J., Nikinmaa, M., and Tuurala, H., Arterial oxygen tension and the structure of the secondary lamellae of the gills in rainbow trout (Oncorhynchus mykiss) after acute exposure to zinc and during recovery, Aquat. Toxicol., 1995, vol. 32, no. 4, pp. 321–331.

    Article  CAS  Google Scholar 

  52. Laurent, P., L’évolution de PaO2 au cours de changements rapides de PwO2 chez deux teleosteens a biotopes differents: Salmo gairdnerii et Ictalurus melas, J. Physiol. (France), 1975, vol. 70, no. 5, pp. 571–581.

    CAS  Google Scholar 

  53. Londraville, R.L. and Sidell, B.D., Ultrastructure of aerobic muscle in Antarctic fishes may contribute to maintenance of diffusive fluxes, J. Exp. Biol., 1990, vol. 150, pp. 205–220.

    Google Scholar 

  54. Lutz, P.L. and Nilsson, G.E., Contrasting strategies for anoxic brain survival—glycolysis up or down, J. Exp. Biol., 1997, vol. 200, pp. 411–419.

    PubMed  CAS  Google Scholar 

  55. MacCormack, T.J. and Driedzic, W.R., Cardiorespiratory and tissue adenosine responses to hypoxia and reoxygenation in the short-horned sculpin Myoxocephalus scorpius,J. Exp. Biol., 2004, vol. 207, pp. 4157–4164.

    Article  PubMed  CAS  Google Scholar 

  56. Maina, J.N., Fundamental structural aspects and feature in the bioengineering of the gas exchangers: comparative perspectives, Adv. Anat. Embriol. Cell Biol., 2002, vol. 163, nos. 3–12, pp. 1–108.

  57. Malte, H., Effect of aluminum in hard, acid water on metabolic rate, blood gas tensions and ionic status in the rainbow trout, J. Fish Biol., 1986, vol. 29, no. 2, pp. 187–198.

    Article  CAS  Google Scholar 

  58. Maslennikova, L.S. and Popova, N.I., Oxygen content in muscles of juveniles of the masu salmon and Dolly Varden trout when adapting to sea water, Materialy VI Vsesoyuznoi konferentsii po ekologicheskoi fiziologii i biokhimii ryb, sentyabr’1985, Tezisy dokladov (Proc. VI All-Union Conf. on Ecological Physiology and Biochemistry of Fishes, September 1985, Abstracts of Papers), Vilnius, 1985, pp. 141–142.

  59. Mathieu-Costello, O., Brill, R.W., and Hochachka, P.W., Structural basis for oxygen delivery: muscle capillaries and manifolds in tuna red muscle, Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol., 1996, vol. 113, no. 1, pp. 25–31.

    Article  CAS  Google Scholar 

  60. McKenzie, D.J., Aota, S., and Randall, D.J., Ventilatory and cardiovascular responses to blood pH, plasma PCO2, blood O2 content and catecholamines in an air-breathing fish, the bowfin (Amia calva), Physiol. Zool., 1991, vol. 64, no. 2, pp. 432–450.

    Article  CAS  Google Scholar 

  61. McKenzie, D.J., Randall, D.J., Lin, H., and Aota, S., Effect of changes in plasma pH CO2 and ammonia on ventilation in trout, Fish Physiol. Biochem., 1993, vol. 10, no. 6, pp. 507–515.

    Article  PubMed  CAS  Google Scholar 

  62. McKenzie, D.J., Wong, S., Randall, D.J., Egginton, S., Taylor, E.W., and Farrell, A.P., The effects of sustained exercise and hypoxia upon oxygen tension in the red muscle of rainbow trout, J. Exp. Biol., 2004, vol. 207, pp. 3629–3637.

    Article  PubMed  CAS  Google Scholar 

  63. McKim, J.M., Lien, G.J., Hoffman, A.D., and Jenson, C.T., Respiratory-cardiovascular physiology and xenobiotic gill flux in the lake trout (Salvelinus namaycush), Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol., 1999, vol. 123, no. 1, pp. 69–81.

    Article  Google Scholar 

  64. Milne, R.S. and Randall, D.J., Regulation of arterial pH during fresh water to sea water transfer in the rainbow trout (Salmo gaidneri), Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol., 1975, vol. 53, no. 2, pp. 157–160.

    Article  Google Scholar 

  65. Motais, R., Comment les poissons s’adaptent au manque d’oxygene, Recherche, 1993, vol. 24, no. 255, pp. 752–754.

    Google Scholar 

  66. Nikinmaa, M. and Jensen, F.B., Blood oxygen transport and acid-base status of stressed trout (Salmo gairdnerii): pre- and postbranchial values in winter fish, Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol., 1986, vol. 84, no. 2, pp. 391–396.

    Article  Google Scholar 

  67. O’Brien, K.M. and Sidell, B.D., The interplay among cardiac ultrastructure, metabolism and the expression of oxygen-binding proteins in Antarctic fishes, J. Exp. Biol., 2000, vol. 203, no. 8, pp. 1287–1297.

    PubMed  Google Scholar 

  68. Paajanen, V. and Vornanen, M., Effects of chronic hypoxia on inward rectifier K+ current (IK1) in ventricular myocytes of crucian carp (Carassius carassius) heart, J. Membr. Biol., 2003, vol. 194, no. 2, pp. 119–127.

    Article  PubMed  CAS  Google Scholar 

  69. Perry, S.F. and Kinkead, R., The role of catecholamines in regilating arterial oxygen content during acute hypercapnic acidosis in rainbow trout (Salmo gaidneri), Respir. Physiol., 1989, vol. 77, no. 3, pp. 365–377.

    Article  PubMed  CAS  Google Scholar 

  70. Perry, S. and Thomas, S., The effect of endogenous or exogenous catecholamines on blood respiratory status during acute hypoxia in rainbow trout (Oncorhynchus mykiss), J. Comp. Physiol. B, 1991, vol. 161, no. 5, pp. 489–497.

    Article  PubMed  CAS  Google Scholar 

  71. Perry, S.F., Kinkead, R., Gallaugher, P., and Randall, D.J., Evidence that hypoxemia promotes catecholamine release during hypercapnic acidosiss in rainbow trout (Salmo gaidneri), Respir. Physiol., 1989, vol. 77, no. 3, pp. 351–363.

    Article  PubMed  CAS  Google Scholar 

  72. Perry, S.F., Fritshe, R., Kinkead, R., and Nilsson, S., Control of catecholamins release in vivo and in situ in the Atlantic cod (Gadus morhua) during hypoxia, J. Exp. Biol., 1991, vol. 155, pp. 549–566.

    CAS  Google Scholar 

  73. Peyraud-Waitzenegger, M., Simultaneous modifications of ventilation and arterial PO2 by catecholamines in the eel, Anguilla anguilla L.: participation of α and β effects, J. Comp. Physiol. B, 1979, vol. 129, no. 4, pp. 343–354.

    Article  CAS  Google Scholar 

  74. Portner, H.O., Mark, F.C., and Bock, C., Oxygen limited thermal tolerance in fish?—Answers obtained by nuclear magnetic resonance techniques (review), Respir. Physiol. Neurobiol., 2004, vol. 141, no. 3, pp. 243–260.

    Article  PubMed  CAS  Google Scholar 

  75. Randall, D., The control of respiration and circulation in fish during exercise and hypoxia, J. Exp. Biol., 1982, vol. 100, pp. 275–288.

    Google Scholar 

  76. Rasio, E.A. and Goresky, C.A., Capillary limitation of oxygen distribution in the isolated rete mirabile of the eel (Anguilla anguilla), Circ. Res., 1979, vol. 44, no. 4, pp. 498–503.

    Article  PubMed  CAS  Google Scholar 

  77. Rombough, P.J., Intravascular oxygen tension in cutaneously respiring rainbow trout (Oncorhynchus mykiss) larvae, Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol., 1992, vol. 101, no. 1, pp. 23–27.

    Article  Google Scholar 

  78. Salama, A., The role of cAMP in regulating the β-adrenergic response of rainbow trout (Oncorhynchus mykiss) red blood cells, Fish Physiol. Biochem., 1993, vol. 10, no. 6, pp. 485– 490.

    Article  PubMed  CAS  Google Scholar 

  79. Savina, M.V., Mekhanizmy adaptatsii tkanevogo dykhaniya v evolyutsii pozvonochnykh (Adaptation Mechanism of Tissue Respiration in Evolution of Vertebrates), St. Petersburg: Nauka, 1992.

  80. Shulman, G.E. and Love, R.M., The Biochemical Ecology of Marine Fishes, Advances in Marine Biology vol. 36, Amsterdam: Elsevier, 1999.

  81. Sidell, B.D. and Hazel, J.R., Temperature affects the diffusion of small molecules through cytosol of fish muscle, J. Exp. Biol., 1987, vol. 129, pp. 191–203.

    PubMed  CAS  Google Scholar 

  82. Smatresk, N.J., Burleson, M.L., and Azizi, S.O., Chemoreflexive responses to hypoxia and NaCN in longnose gar: evidence for two chemoreceptor loci, Part 2, Am. J. Physiol., 1986, vol. 251, no. 1, pp. R116–R125.

    PubMed  CAS  Google Scholar 

  83. Smith, F.M. and Jones, D.R., Localization of receptors causing hypoxia bradycardia in trout (Salmo gairdneri), Can. J. Zool., 1978, vol. 56, no. 6, pp. 1260–1265.

    Article  Google Scholar 

  84. Soivio, A., Nikinmaa, M., Nyholm, K., and Wesstman, K., The role of gills in the responses of Salmo gaidneri during moderate hypoxia, Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol., 1981, vol. 70, no. 1, pp. 133–139.

    Article  Google Scholar 

  85. Soldatov, A.A., An experimental study of the distribution of oxygen tension in the muscle tissue of marine fishes, Zh. Evol. Biokhim. Fiziol., 1993, vol. 26, nos. 5–6, pp. 656–659.

    Google Scholar 

  86. Soldatov, A.A., Organ blood flow and vessels of microcirculatory bed in fish (review), J. Evol. Biochem. Physiol., 2006, vol. 42, no. 3, pp. 243–252.

    Article  Google Scholar 

  87. Soldatov, A.A., Mass-transfer, utilization, and diffusion of oxygen in skeletal muscles of the stenohaline goby Gobius cobitus Pallas under conditions of hypoosmotic medium, J. Evol. Biochem. Physiol., 2012, vol. 49, no. 2, pp. 215–222.

    Article  CAS  Google Scholar 

  88. Soldatov, A.A., The diffusion capacity of the hematoparenchymal barrier in mammalian and marine fish skeletal muscles, J. Evol. Biochem. Physiol., 2018, vol. 54, no. 1, pp. 43–49.

    Article  Google Scholar 

  89. Soldatov, A.A. and Parfenova, I.A., Oxygen tension in blood, skeletal muscles, and features of tissue metabolism of golden grey mullet in experimental hypothermia, Probl. Kriobiol., 2009, vol. 19, no. 3, pp. 290–300.

    CAS  Google Scholar 

  90. Soldatov, A.A. and Parfenova, I.A., Stoichiometry of cytochromes and oxygen tension in skeletal muscles of marine fish, Ukr. Biochem. J., 2014, vol. 96, no. 2, pp. 60–67.

    Article  Google Scholar 

  91. Soldatov, A.A. and Savina, M.V., Effect of hypoxia on the content and stoichiometry of cytochromes in muscle of the gray mullet Liza aurata,J. Evol. Biochem. Physiol., 2008, vol. 44, no. 5, pp. 599–604.

    Article  CAS  Google Scholar 

  92. Soncini, R. and Glass, M.L., The effects of temperature and hyperoxia on arterial \({{P}_{{{{{\text{O}}}_{2}}}}}\) and acid-base status in Piaractus mesopotamicus,J. Fish Biol., 1997, vol. 51, no. 2, pp. 225–233.

    Google Scholar 

  93. Soncini, R. and Glass, M.L., Oxygen and acid-base status related drives to gill ventilation in carp, J. Fish Biol., 2000, vol. 56, no. 3, pp. 528–541.

    Article  Google Scholar 

  94. Soulier, P., Peyraud-Waitzenegger, M., and Peyraud, C., Respiratory and cardiovascular effects of hypoxia in the European eel, Arch. Int. Physiol., Biochem. Biophys., 1991, vol. 99, no. 5, pp. 124–132.

    Google Scholar 

  95. Steffensen, J.F. and Farrell, A.P., Swimming performance, venous oxygen tension and cardiac performance of coronary-ligated rainbow trout, Oncorhynchus mykiss, exposed to progressive hypoxia, Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol., 1998, vol. 119, no. 2, pp. 585–592.

    Article  CAS  Google Scholar 

  96. Takeda, T., Ventilation, cardiac output and blood respiratory parameters in the carp, Cyprinus carpio, during hyperoxia, Respir. Physiol., 1990, vol. 81, no. 2, pp. 227–239.

    Article  PubMed  CAS  Google Scholar 

  97. Taylor, E.W. and Barrett, D.J., Evidence of a respiratory role for the hypoxic bradycardia in the dogfish, Scyliorhinus canicula L., Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol., 1985, vol. 80, no. 1, pp. 99–102.

    Article  CAS  Google Scholar 

  98. Taylor, S.E., Egginton, S., and Taylor, E.W., Respiratory and cardiovascular responses in rainbow trout (Oncorhynchus mykiss) to aerobic exercise a range of acclimation temperatures, J. Physiol., 1993, vol. 459, p. 19.

    Google Scholar 

  99. Thomas, S., Perry, S.F., Pehnee, Y., and Maxime, V., Metabolic alkalosis and the response of the trout, Salmo fario, to acute severe hypoxia, Respir. Physiol., 1992, vol. 87, no. 1, pp. 91–104.

    Article  PubMed  CAS  Google Scholar 

  100. Tufts, B.L., Bagatto, B., and Cameron, B., In vivo analysis of gas transport in arterial and venous blood of the sea lamprey, Petromyzon marinus,J. Exp. Biol., 1992, vol. 169, pp. 105–119.

    Google Scholar 

  101. Tuurala, H., Relationship between secondary lamellar structure and dorsal aortic oxygen tension in Salmo gairdneri with gills damaged by zinc, Ann. Zool. Fenn., 1983, vol. 20, no. 3, pp. 235–238.

    CAS  Google Scholar 

  102. Vinogradov, S.N., Oxygen regimes of the body under conditions of maximum physical activity in individuals with various levels of aerobic capabilities, Sovrem. Probl. Nauki Obraz., 2014, no. 5, pp. 14–20.

  103. Wells, R.M.G., Forster, M.E., Davison, W., Taylor, H.H., Davie, P.S., and Satchell, G.H., Blood oxygen transport in the free-swimming hagfish, Eptatretus cirrhatus,J. Exp. Biol., 1986, vol. 123, pp. 43–53.

    PubMed  CAS  Google Scholar 

  104. Williams, E.M., Glass, M.L., and Heisler, N., Blood oxygen tension and content in carp, Cyprinus carpio L., during hypoxia and methaemoglobinemia, Aquacult. Fish. Manage., 1992, vol. 23, no. 6, pp. 679–690.

    Google Scholar 

  105. Wood, Ch., McMahon, B.R., and McDonald, D.G., Respiratory, ventilatory, and cardiovascular responses to experimental anemia in the starry flounder, Platichthys stellatus,J. Exp. Biol., 1979, vol. 82, pp. 139–162.

    PubMed  CAS  Google Scholar 

  106. Yakubova, R.R., Oxygen tension in liver tissue of some fish species of the Baikal Lake after introduction of bile acids, in Voprosy vodnoi toksikologii i sravnitel’noi fiziologii (Problems of Aquatic Toxicology and Comparative Physiology), Yaroslavl: Yarosl. Gos. Univ., 1982, pp. 78–83.

  107. Yamamoto, K.I., Effect of formalin on gas exchange in the gills of carp Cyprinus carpio,Comp. Biochem. Physiol., C: Comp. Pharmacol., 1991, vol. 98, nos. 2–3, pp. 463–465.

    Article  Google Scholar 

  108. Yamamoto, K., Itazawa, Y., and Kobayashi, H., Gas exchange in the gills of yellowtail, Seriola quinqueradiata under resting and normoxic condition, Bull. Jpn. Soc. Sci. Fish., 1981, vol. 47, no. 4, pp. 447–451.

    Article  Google Scholar 

  109. Yu, K.L. and Woo, N.Y.S., Changes in blood respiratory properties and cardiovascular function during acute exposure to hypoxic water in an air-breathing teleost, Channa maculate,J. Fish. Biol., 1987, vol. 30, no. 6, pp. 749–760.

    Article  Google Scholar 

  110. Zhou, B.S., Wu, R.S., Randall, D.J., Lam, P.K., Ip, Y.K., and Chew, S.F., Metabolic adjustments in the common carp during prolonged hypoxia, J. Fish Biol., 2000, vol. 57, no. 5, pp. 1160–1171.

    Article  CAS  Google Scholar 

Download references

Funding

This work was carried out as part of the State Task (state registration number no. 0826-2018-0003) and supported by the Russian Foundation for Basic Research (project no. 16-04-00135a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Soldatov.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Translated by D. Martynova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soldatov, A.A. Oxygen Regime of Skeletal Muscles in Teleost Fishes and the Mechanisms of Its Functional Correction (Short Review). Biol Bull Rev 10, 28–37 (2020). https://doi.org/10.1134/S2079086420010089

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079086420010089

Navigation