Skip to main content
Log in

DNA Barcoding: Methods and Approaches

  • Published:
Biology Bulletin Reviews Aims and scope Submit manuscript

Abstract

The DNA barcoding method proposed 15 years ago has gained considerable popularity. This work provides a review of methodical approaches in this field and their progress over the past years. Direct and reverse approaches to DNA barcoding and their prospects due to the development of sequencing methods are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Adl, S.M., Simpson, A.G., Farmer, M.A., et al., The new higher level classification of eukaryotes with emphasis on the taxonomy of protists, J. Eukaryotic Microbiol., 2005, vol. 52, no. 5, pp. 399–451.

    Article  Google Scholar 

  2. Ballard, J.W.O. and Whitlock, M.C., The incomplete natural history of mitochondria, Mol. Ecol., 2004, vol. 13, no. 4, pp. 729–744.

    Article  PubMed  Google Scholar 

  3. Begerow, D., Nilsson, H., Unterseher, M., and Maier, W., Current state and perspectives of fungal DNA barcoding and rapid identification procedures, App. Microbiol. Biotechnol., 2010, vol. 87, no. 1, pp. 99–108.

    Article  CAS  Google Scholar 

  4. Bernt, M., Braband, A., Schierwater, B., and Stadler, P.F., Genetic aspects of mitochondrial genome evolution, Mol. Phylogenet. Evol., 2013, vol. 69, no. 2, pp. 328–338.

    Article  CAS  PubMed  Google Scholar 

  5. Blaxter, M., Mann, J., Chapman, T., et al., Defining operational taxonomic units using DNA barcode data, Philos. Trans. R. Soc. B, 2005, vol. 360, no. 1462, pp. 1935–1943.

    Article  CAS  Google Scholar 

  6. Bullerwell, C.E. and Lang, B.F., Fungal evolution: the case of the vanishing mitochondrion, Curr. Opin. Microbiol., 2005, vol. 8, pp. 362–369.

    Article  CAS  PubMed  Google Scholar 

  7. Čandek, K. and Kuntner, M., DNA barcoding gap: reliable species identification over morphological and geographical scales, Mol. Ecol. Res., 2015, vol. 15, no. 2, pp. 268–277.

    Article  CAS  Google Scholar 

  8. Cameron, S., Rubinoff, D., and Will, K., Who will actually use DNA barcoding and what will it cost? Syst. Biol., 2006, vol. 55, no. 5, pp. 844–847.

    Article  PubMed  Google Scholar 

  9. Chase, M.W., Cowan, R.S., Hollingsworth, P.M., et al., A proposal for a standardized protocol to barcode all land plants, Taxon, 2007, vol. 56, pp. 295–299.

    Article  Google Scholar 

  10. Crespo, A. and Lumbsch, H.T., Cryptic species in lichen–forming fungi, IMA Fungus, 2010, vol. 1, no. 2, pp. 167–170.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Cruaud, P., Rasplus, J.Y., Rodriguez, L.J., and Cruaud, A., High-throughput sequencing of multiple amplicons for barcoding and integrative taxonomy, Sci. Rep., 2017, vol. 7. https://doi.org/10.1101/073304

  12. De Barba, M., Miquel, C., Boyer, F., et al., DNA metabarcoding multiplexing and validation of data accuracy for diet assessment: application to omnivorous diet, Mol. Ecol. Res., 2014, vol. 14, no. 2, pp. 306–323.

    Article  CAS  Google Scholar 

  13. DeSalle, R., Egan, M.G., and Siddall, M., The unholy trinity: taxonomy, species delimitation and DNA barcoding, Philos. Trans. R. Soc. B, 2005, vol. 360, no. 1462, pp. 1905–1916.

    Article  CAS  Google Scholar 

  14. Drouin, G., Daoud, H., and Xia, J., Relative rates of synonymous substitutions in the mitochondrial, chloroplast and nuclear genomes of seed plants, Mol. Phylogenet. Evol., 2008, vol. 49, no. 3, pp. 827–831.

    Article  CAS  PubMed  Google Scholar 

  15. Dupont, L., Porco, D., Symondson, W.O.C., and Roy, V., Hybridization relics complicate barcode-based identification of species in earthworms, Mol. Ecol. Res., 2016, vol. 16, no. 4, pp. 883–894.

    Article  CAS  Google Scholar 

  16. Eickbush, T.H. and Eickbush, D.G., Finely orchestrated movements: evolution of the ribosomal RNA genes, Genetics, 2007, vol. 175, no. 2, pp. 477–485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fazekas, A.J., Burgess, K.S., Kesanakurti, P.R., et al., Multiple multilocus DNA barcodes from the plastid genome discriminate plant species equally well, PLoS One, 2008, vol. 3, no. 7, p. e2802.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Férandon, C., Xu, J., and Barroso, G., The 135 kbp mitochondrial genome of Agaricus bisporus is the largest known eukaryotic reservoir of group I introns and plasmid-related sequences, Fungal Genet. Biol., 2013, vol. 55, pp. 85–91.

    Article  PubMed  CAS  Google Scholar 

  19. Folmer, O., Hoeh, W.R., Black, M.B., and Vrijenhoek, R.C., Conserved primers for PCR amplification of mitochondrial DNA from different invertebrate phyla, Mol. Mar. Biol. Biotechnol., 1994, vol. 3, pp. 294–299.

    CAS  PubMed  Google Scholar 

  20. Ford, C.S., Ayres, K.L., Haider, N., et al., Selection of candidate DNA barcoding regions for use on land plants, Bot. J. Linn. Soc., 2009, vol. 159, pp. 1–11.

    Article  Google Scholar 

  21. Geisen, S., Laros, I., Vizcaíno, A., et al., Not all are free–living: high–throughput DNA metabarcoding reveals a diverse community of protists parasitizing soil metazoa, Mol. Ecol., 2015, vol. 24, no. 17, pp. 4556–4569.

    Article  CAS  PubMed  Google Scholar 

  22. Gilbert, M.T.P., Moore, W., Melchior, L., and Worobey, M., DNA extraction from dry museum beetles without conferring external morphological damage, PLoS One, 2007, vol. 2, no. 3, p. e272.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Gilmore, S.R., Gräfenhan, T., Louis-Seize, G., and Seifert, K.A., Multiple copies of cytochrome oxidase 1 in species of the fungal genus Fusarium,Mol. Ecol. Res., 2009, vol. 9, suppl. 1, pp. 90–98.

    Article  CAS  Google Scholar 

  24. Gogarten, J.P. and Townsend, J.P., Horizontal gene transfer, genome innovation and evolution, Nat. Rev. Microbiol., 2005, vol. 3, no. 9, pp. 679–687.

    Article  CAS  PubMed  Google Scholar 

  25. Hajibabaei, M., Smith, M., Janzen, D.H., et al., A minimalist barcode can identify a specimen whose DNA is degraded, Mol. Ecol. Res., 2006, vol. 6, no. 4, pp. 959–964.

    CAS  Google Scholar 

  26. Hajibabaei, M., Singer, G.A., Hebert, P.D.N., and Hickey, D.A., DNA barcoding: how it complements taxonomy, molecular phylogenetics and population genetics, Trans. Genet., 2007, vol. 23, no. 4, pp. 167–172.

    Article  CAS  Google Scholar 

  27. Hammond, P., Species inventory, in Global Biodiversity: Status of the Earth’s Living Resources, Groombridge, B., Ed., London: Chapman and Hall, 1992, pp. 17–39.

    Google Scholar 

  28. Harms-Tuohy, C.A., Schizas, N.V., and Appeldoorn, R.S., Use of DNA metabarcoding for stomach content analysis in the invasive lionfish Pterois volitans in Puerto Rico, Mar. Ecol.: Prog. Ser., 2016, vol. 558, pp. 181–191.

    Article  CAS  Google Scholar 

  29. Hawksworth, D.L., The fungal dimension of biodiversity: magnitude, significance, and conservation, Mycol. Res., 1991, vol. 95, pp. 641–655.

    Article  Google Scholar 

  30. Hawksworth, D.L. and Kalin-Arroyo, M.T., Magnitude and distribution of biodiversity, in Global Biodiversity Assessment, Heywood, V.H., Ed., Cambridge: Cambridge Univ. Press, 1995, pp. 107–191.

    Google Scholar 

  31. Hebert, P.D.N. and Gregory, T.R., The promise of DNA barcoding for taxonomy, Syst. Biol., 2005, vol. 54, no. 5, pp. 852–859.

    Article  PubMed  Google Scholar 

  32. Hebert, P.D.N., Cywinska, A., and Ball, S.L., Biological identifications through DNA barcodes, Proc. R. Soc. B, 2003a, vol. 270, no. 1512, pp. 313–321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hebert, P.D.N., Ratnasingham, S., and de Waard, J.R., Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species, Proc. R. Soc. B, 2003b, vol. 270, suppl. 1, pp. S96–S99.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Hebert, P.D.N., Stoeckle, M.Y., Zemlak, T.S., and Francis, C.M., Identification of birds through DNA barcodes, PLoS Biol., 2004, vol. 2, no. 10, p. e312.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Hebert, P.D.N., Ratnasingham, S., Zakharov, E.V., et al., Counting animal species with DNA barcodes: Canadian insects, Philos. Trans. R. Soc. B, 2016, vol. 371, no. 1702, p. 20150333.

    Article  Google Scholar 

  36. Hoef-Emden, K., Küpper, F.C., and Andersen, R.A., Meeting report: Sloan foundation workshop to resolve problems relating to the taxonomy of microorganisms and to culture collections arising from the barcoding initiatives. Portland ME, November 6–7, 2006, Protist, 2007, vol. 158, no. 2, pp. 135–137.

    Article  PubMed  Google Scholar 

  37. Hollingsworth, P.M., Forrest, L., et al., A DNA barcode for land plants, Proc. Natl. Acad. Sci. U.S.A., 2009, vol. 106, pp. 12794–12797.

    Article  CAS  PubMed Central  Google Scholar 

  38. Hollingsworth, P.M., Graham, S.W., and Little, D.P., Choosing and using a plant DNA barcode, PLoS One, 2011, vol. 6, no. 5, p. e19254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Huang, D., Meier, R., Todd, P.A., and Chou, L.M., Slow mitochondrial COI sequence evolution at the base of the metazoan tree and its implications for DNA barcoding, J. Mol. Evol., 2008, vol. 66, no. 2, pp. 167–174.

    Article  CAS  PubMed  Google Scholar 

  40. Huemer, P., Mutanen, M., Sefc, K.M., and Hebert, P.D.N., Testing DNA barcode performance in 1000 species of European Lepidoptera: large geographic distances have small genetic impacts, PLoS One, 2014, vol. 9, no. 12, p. e115774.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Ivanova, N.V., Zemlak, T.S., Hanner, R.H., and Hebert, P.D.N., Universal primer cocktails for fish DNA barcoding, Mol. Ecol. Note., 2013, vol. 7, pp. 544–548.

    Article  CAS  Google Scholar 

  42. Jiao, Y., Wickett, N.J., Ayyampalayam, S., et al., Ancestral polyploidy in seed plants and angiosperms, Nature, 2011, vol. 473, no. 7345, pp. 97–100.

    Article  CAS  PubMed  Google Scholar 

  43. Kane, N.C. and Cronk, Q., Botany without borders: barcoding in focus, Mol. Ecol., 2008, vol. 17, pp. 5175–5176.

    Article  PubMed  Google Scholar 

  44. Kaunisto, K.M., Roslin, T., Sääksjärvi, I.E., et al., Pellets of proof: first glimpse of the dietary composition of adult odonates as revealed by metabarcoding of feces, Ecol. Evol., 2017, vol. 7, no. 20, pp. 8588–8598.

    Article  PubMed  PubMed Central  Google Scholar 

  45. King, R.A., Tibble, A.L., and Symondson, W.O.C., Opening a can of worms: unprecedented sympatric cryptic diversity within British lumbricid earthworms, Mol. Ecol., 2008, vol. 17, no. 21, pp. 4684–4698.

    Article  PubMed  Google Scholar 

  46. Krell, F.T., Parataxonomy vs. taxonomy in biodiversity studies—pitfalls and applicability of ‘morphospecies’ sorting, Biodiversity Conserv., 2004, vol. 13, no. 4, pp. 795–812.

    Article  Google Scholar 

  47. Kress, W.J. and Erickson, D.L., A two-locus global DNA barcode for land plants: the coding rbcL gene complements the non-coding trnHpsbA apacer region, PLoS One, 2007, vol. 2, p. e508.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Kulski, J.K., Next-generation sequencing—an overview of the history, tools, and “omic” applications, in Next Generation Sequencing: Advances, Applications and Challenges, Kulski, J.K., Ed., London: InTech Open, 2016, pp. 3–60.

    Book  Google Scholar 

  49. Li, X., Yang, Y., Henry, R.J., et al., Plant DNA barcoding: from gene to genome, Biol. Rev., 2015a, vol. 90, no. 1, pp. 157–166.

    Article  PubMed  Google Scholar 

  50. Li, Z., Baniaga, A.E., Sessa, E.B., et al., Early genome duplications in conifers and other seed plants, Sci. Adv., 2015b, vol. 1, no. 10, p. e1501084.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Lobo, J., Costa, P.M., Teixeira, M.A., et al., Enhanced primers for amplification of DNA barcodes from a broad range of marine metazoans, BMC Ecol., 2013, vol. 13, no. 1, p. 34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Martinsson, S., Rhodén, C., and Erséus, C., Barcoding gap, but no support for cryptic speciation in the earthworm Aporrectodea longa (Clitellata: Lumbricidae), Mitochondrial DNA, Part A, 2017, vol. 28, no. 2, pp. 147–155.

    Article  CAS  Google Scholar 

  53. Massana, R., Gobet, A., Audic, S., et al., Marine protist diversity in European coastal waters and sediments as revealed by high-throughput sequencing, Environ. Microbiol., 2015, vol. 17, no. 10, pp. 4035–4049.

    Article  CAS  PubMed  Google Scholar 

  54. McClenaghan, B., Gibson, J.F., Shokralla, S., and Hajibabaei, M., Discrimination of grasshopper (Orthoptera: Acrididae) diet and niche overlap using next-generation sequencing of gut contents, Ecol. Evol., 2015, vol. 5, no. 15, pp. 3046–3055.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Nanney, D.L., Genes and phenes in Tetrahymena, Bioscience, 1982, vol. 32, no. 10, pp. 783–788.

    Article  Google Scholar 

  56. Nock, C.J., Waters, D.L., Edwards, M.A., et al., Chloroplast genome sequences from total DNA for plant identification, Plant Biotech. J., 2011, vol. 9, pp. 328–333.

    Article  CAS  Google Scholar 

  57. Pawlowski, J., Audic, S., Adl, S., et al., CBOL protist working group: barcoding eukaryotic richness beyond the animal, plant, and fungal kingdoms, PLoS Biol., 2012, vol. 10, no. 11, p. e1001419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Porco, D., Chang, C.H., Dupont, L., et al., A reference library of DNA barcodes for the earthworms from Upper Normandy: biodiversity assessment, new records, potential cases of cryptic diversity and ongoing speciation, Appl. Soil Ecol., 2018, vol. 124, pp. 362–371.

    Article  Google Scholar 

  59. Pawlowski, J., Lejzerowicz, F., Apotheloz-Perret-Gentil, L., et al., Protist metabarcoding and environmental biomonitoring: time for change, Eur. J. Protistol., 2016, vol. 55, pp. 12–25.

    Article  CAS  PubMed  Google Scholar 

  60. Radulovici, A.E., Sainte-Marie, B., and Dufresne, F., DNA barcoding of marine crustaceans from the estuary and Gulf of St. Lawrence: a regional-scale approach, Mol. Ecol. Res., 2009, vol. 9, suppl. 1, pp. 181–187.

    Article  CAS  Google Scholar 

  61. Ratnasingham, S. and Hebert, P.D.N., BOLD: the barcode of life data system (www.barcodinglife. org), Mol. Ecol. Note, 2007, vol. 7, pp. 355–364.

    Google Scholar 

  62. Richard, G.F., Kerrest, A., and Dujon, B., Comparative genomics and molecular dynamics of DNA repeats in eukaryotes, Microbiol. Mol. Biol. Rev., 2008, vol. 72, no. 4, pp. 686–727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Rinke, C., Schwientek, P., Sczyrba, A., et al., Insights into the phylogeny and coding potential of microbial dark matter, Nature, 2013, vol. 499, no. 7459, pp. 431–437.

    Article  CAS  PubMed  Google Scholar 

  64. Rohland, N., Siedel, H., and Hofreiter, M., Nondestructive DNA extraction method for mitochondrial DNA analyses of museum specimens, Biotechniques, 2004, vol. 36, no. 5, pp. 814–820.

    Article  CAS  PubMed  Google Scholar 

  65. Sanger, F., Nicklen, S., and Coulson, A.R., DNA sequencing with chain–terminating inhibitors, Proc. Natl. Acad. Sci. U.S.A., 1977, vol. 74, no. 12, pp. 5463–5467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Schmit, J. and Mueller, G., An estimate of the lower limit of global fungal diversity, Biodiversity Conserv., 2007, vol. 16, pp. 99–111.

    Article  Google Scholar 

  67. Schoch, C.L., Robbertse, B., Robert, V., et al., Finding needles in haystacks: linking scientific names, reference specimens and molecular data for fungi, Database, 2014. https://doi.org/10.1093/database/bau061

    Article  PubMed  PubMed Central  Google Scholar 

  68. Shearer, T.L. and Coffroth, M.A., Barcoding corals: limited by interspecific divergence, not intraspecific variation, Mol. Ecol. Res., 2008, vol. 8, no. 2, pp. 247–255.

    Article  CAS  Google Scholar 

  69. Shekhovtsov, S.V., Shekhovtsova, I.N., and Peltek, S.E., Phylogeny of Siberian species of Carex sect. Vesicariae based on nuclear and plastid markers, Nord. J. Bot., 2012, vol. 30, no. 3, pp. 343–351.

    Article  Google Scholar 

  70. Shekhovtsov, S.V., Golovanova, E.V., and Peltek, S.E., Cryptic diversity within the Nordenskiold’s earthworm, Eisenia nordenskioldi subsp. nordenskioldi (Lumbricidae, Annelida), Eur. J. Soil Biol., 2013, vol. 58, pp. 13–18.

    Article  Google Scholar 

  71. Shekhovtsov, S.V., Berman, D.I., Bazarova, N.E., et al., Cryptic genetic lineages in Eisenia nordenskioldi pallida (Oligochaeta, Lumbricidae), Eur. J. Soil Biol., 2016, vol. 75, pp. 151–156.

    Article  Google Scholar 

  72. Shekhovtsov, S.V., Bazarova, N.E., Berman, D.I., et al., DNA barcoding: how many earthworm species are there in the south of West Siberia? Russ. J. Genet.: Appl. Res., 2017, vol. 7, no. 1, pp. 57–62.

    Article  CAS  Google Scholar 

  73. Shekhovtsov, S.V., Sundukov, Y.N., Blakemore, R.J., et al., Identifying earthworms (Oligochaeta, Megadrili) of the Southern Kuril Islands using DNA barcodes, Anim. Biodiversity Conserv., 2018, vol. 41, no. 1, pp. 9–17.

    Article  Google Scholar 

  74. Shneer, V.S., DNA bar-coding of animal and plant species as an approach for their molecular identification and describing of diversity, Zh. Obshch. Biol., 2009, vol. 70, no. 4, pp. 296–315.

    CAS  PubMed  Google Scholar 

  75. Shneyer, V.S., DNA barcoding is a new approach in comparative genomics of plants, Russ. J. Genet., 2009, vol. 45, no. 11, pp. 1267–1278.

    Article  CAS  Google Scholar 

  76. Soltis, P.S., Marchant, D.B., van de Peer, Y., and Soltis, D.E., Polyploidy and genome evolution in plants, Curr. Opin. Genet. Dev., 2015, vol. 35, pp. 119–125.

    Article  CAS  PubMed  Google Scholar 

  77. Stackebrandt, E. and Goebel, B.M., Taxonomic note: a place for DNA–DNA re-association and 16S rRNA sequence analysis in the present species definition in bacteriology, Int. J. Syst. Evol. Microbiol., 1994, vol. 44, no. 4, pp. 846–849.

    Article  CAS  Google Scholar 

  78. Taberlet, P., Coissac, E., Hajibabaei, M., and Rieseberg, L.H., Environmental DNA, Mol. Ecol., 2012, vol. 21, no. 8, pp. 1789–1793.

    Article  CAS  PubMed  Google Scholar 

  79. Taberlet, P., Bonin, A., Zinger, L., and Coissac, E., Environmental DNA: For Biodiversity Research and Monitoring, Oxford: Oxford Univ. Press, 2018.

    Book  Google Scholar 

  80. Valentini, A., Taberlet, P., Miaud, C., et al., Next-generation monitoring of aquatic biodiversity using environmental DNA metabarcoding, Mol. Ecol., 2016, vol. 25, no. 4, pp. 929–942.

    Article  CAS  PubMed  Google Scholar 

  81. Vargas, S., Schuster, A., Sacher, K., et al., Barcoding sponges: an overview based on comprehensive sampling, PLoS One, 2013, vol. 7, no. 7, p. e39345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Vsevolodova-Perel’, T.S., Dozhdevye chervil fauny Rossii. Kadastr i opredelitel’ (Earth Worm in Russian Fauna: Cadastre and Guide), Moscow: Nauka, 1997.

  83. Wang, Q., Yu, Q.S., and Liu, J.Q., Are nuclear loci ideal for barcoding plants? A case study of genetic delimitation of two sister species using multiple loci and multiple intraspecific individuals, J. Syst. Evol., 2011, vol. 49, no. 3, pp. 182–188.

    Article  Google Scholar 

  84. Wang, W.Y., Srivathsan, A., Foo, M., et al., Sorting specimen-rich invertebrate samples with cost-effective NGS barcodes: validating a reverse workflow for specimen processing, Mol. Ecol. Res., 2018, vol. 3, pp. 490–501.

    Article  CAS  Google Scholar 

  85. Weiss, M., Selosse, M.A., Rexer, K.H., et al., Sebacinales: a hitherto overlooked cosm of heterobasidiomycetes with a broad mycorrhizal potential, Mycol. Res., 2004, vol. 108, no. 9, pp. 1003–1010.

    Article  PubMed  Google Scholar 

  86. Will, K.W., Mishler, B.D., and Wheeler, Q.D., The perils of DNA barcoding and the need for integrative taxonomy, Syst. Biol., 2005, vol. 54, no. 5, pp. 844–851.

    Article  PubMed  Google Scholar 

  87. Wolfe, K.H., Li, W.H., and Sharp, P.M., Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs, Proc. Natl. Acad. Sci. U.S.A., 1987, vol. 84, no. 24, pp. 9054–9058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Xu, J., Fungal DNA barcoding, Genome, 2016, vol. 59, no. 11, pp. 913–932.

    Article  CAS  PubMed  Google Scholar 

  89. Xu, J., Vilgalys, R., and Mitchell, T.G., Multiple gene genealogies reveal recent dispersion and hybridization in the human pathogenic fungus Cryptococcus neoformans,Mol. Ecol., 2000, vol. 9, no. 10, pp. 1471–1481.

    Article  CAS  PubMed  Google Scholar 

  90. Zuckerkandl, E. and Pauling, L., Molecules as documents of evolutionary history, J. Theor. Biol., 1965, vol. 8, no. 2, pp. 357–366.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project nos. 18-04-00507_a and 19-04-00661_a) and by the State Budgetary Project no. 0324-2019-0040.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Shekhovtsov.

Ethics declarations

Conflict of interest. The authors declare that they have no conflict of interest.

Statement of animal welfare. This article does not contain any studies involving animals performed by any of the authors.

Statement of compliance with standards of research involving humans as subjects. This article does not contain any studies involving human participants performed by any of the authors.

Additional information

Translated by A. Barkhash

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shekhovtsov, S.V., Shekhovtsova, I.N. & Peltek, S.E. DNA Barcoding: Methods and Approaches. Biol Bull Rev 9, 475–483 (2019). https://doi.org/10.1134/S2079086419060057

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079086419060057

Keywords:

Navigation