Skip to main content
Log in

Physicomechanical Characteristics of Composite Based on Polyimide Matrix Filled with Tungsten Oxide

  • MATERIALS FOR AVIATION AND SPACE TECHNOLOGIES
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

The article presents the possibility of obtaining polymer composite materials based on thermoplastic polyimide and tungsten oxide (WO3) modified with a hydrophobic silicone fluid. Data on surface microscopy, Vickers microhardness, density, and thermal stability of composites with different tungsten oxide contents are presented. As a result of modifying tungsten oxide, its surface becomes hydrophobic, and the contact angle increases from 31° to 101°. The microstructure of the surface of composites has a fine-grained structure without microcracks and chips. The lowest density material has no filler. With increasing filler content, the density increases. When the content of the filler is 80 wt %, the density is 4.35 g/cm3. The optimum content of tungsten oxide filler is 60 wt % as measured by the surface microhardness. The work shows that the introduction of the proposed filler significantly increases the heat resistance of polyimide. Pure polyimide is stable up to 425°С, and at a temperature of 680°С, its full thermal decomposition takes place. With increasing content of modified tungsten oxide in the composite, the rate of mass loss decreases. In the composite containing 60 wt % filler at 680°C, the mass loss is 38%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Vernigorov, K.B., Alent’ev A.Y., Meshkov I.B., Muzafarov A.M., Voronina, E.N., Novikov, L.S., and Chernik, V.N., Use of hyperbranchedpolyethoxysiloxane to improve the resistance of thermoplastic polyimide coatings to atomic oxygen environment, Inorg. Mater.: Appl. Res., 2012, vol. 3, no. 2, pp. 81–87.

    Article  Google Scholar 

  2. Svetlichnyi, V.M. and Kudryavtsev, V.V., Polyimides and the problem of the creation of modern construction composite materials, Polym. Sci., Ser. B, 2003, vol. 45, nos. 5–6, p. 140.

  3. Tsai, C.-L., Yen, H.-J., and Liou, G.-S., Highly transparent polyimide hybrids for optoelectronic applications, React. Funct. Polym., 2016, vol. 108, pp. 2–30.

    Article  CAS  Google Scholar 

  4. Muradov, A.D. and Kyrykbaeva, A.A., Effect of load-induced oxygen absorption in YBa2Cu3O6 +x on mechanical properties of the “polyimide–YBa2Cu3O6 +x” system, Tech. Phys., 2018, vol. 63, no. 5, pp. 723–732.

    Article  CAS  Google Scholar 

  5. Egorov, A.S., Voznyak, A.I., Ivanov, V.S., Tsarkova, K.V., and Antipov, A.V., RF Patent 2644906, 2018.

  6. Niu, Y., Zhang, X., Fang, O., and Li, Y., Fabrication, optical and electrical properties of solvethermal reduced grapheme oxide/polyimide composites by in situ polymerization, Synthetic Metals, 2017, vol. 224, pp. 86–91.

    Article  CAS  Google Scholar 

  7. Ahmad, M.B., Gharayebi, Y., Salit, M.S., Hussein, M.Z., Ebrahimias, S., and Dehzangi, A., Preparation, characterization and thermal degradation of polyimide (4-APS/BTDA)/SiO2 composite films, Int. J. Mol. Sci., 2012, vol. 13, pp. 4860–4872.

    Article  Google Scholar 

  8. Pavlenko, V.I., Bondarenko, G.G., Tarasov, D.G., and Edamenko, O.D., Gamma modification of radiation-resistant fluoroplastic composite, Inorg. Mater.: Appl. Res., 2013, vol. 4, no. 5, pp. 389–393.

    Article  Google Scholar 

  9. Cherkashina, N.I. and Pavlenko, A.V., Synthesis of polymer composite based on polyimide and Bi12SiO20 sillenite, Polym.-Plast. Technol. Eng., 2018, vol. 57, pp. 1923–1931.

    Article  CAS  Google Scholar 

  10. Alfimova, N.I., Kalatozi, V.V., Karatsupa, S.V., Vishnevskaya, Ya.Yu., and Shevchenko, M.S., Mechanical activation as a method to improve the effective use of raw materials of different genesis in the material science, Vestn. Belgorod. Gos. Tekhnol. Univ. im. V.G. Shukhova, 2016, no. 6, pp. 85–89.

  11. Klyuev, V.A., Loznetsova, N.N., Malkin, A.I., and Toporov, Yu.P., Effect of the mechanical activation of fillers on the parameters of thermostimulated current in polymer composites, Tech. Phys. Lett., 2010, vol. 36, no. 8, pp. 739–740.

    Article  CAS  Google Scholar 

  12. Ishchenko, K.M., Suleimanova, L.A., and Zhernovskii, I.V., Application of anionic active organosilicon hydrophobizators for the treatment of materials based on expanded perlite sand and waste products, Vestn. Belgorod. Gos. Tekhnol. Univ. im. V.G. Shukhova, 2012, no. 3, pp. 60–63.

  13. Salzano de Luna, M., Galizia, M., Wojnarowicz, J., Rosa, R., Lojkowski, W., Leonelli, C., Acierno, D., and Filippone, G., Dispersing hydrophilic nanoparticles in hydrophobic polymers: HDPE/ZnO nanocomposites by a novel template-based approach, eXPRESS Polym. Lett., 2014, vol. 8, no. 5, pp. 362–372.

    Article  Google Scholar 

  14. Jiang, H., Gao, Y., Khoso, S.A., Ji, W., and Hu, Y., A new approach for characterization of hydrophobization mechanisms of surfactants on muscovite surface, Sep. Purif. Technol., 2019, vol. 209, pp. 936–945.

    Article  CAS  Google Scholar 

  15. Chukhlanov, V.Yu. and Ionova, M.A., Single-component polyurethane composition, modified tetraethoxysilane, Plast. Massy, 2012, no. 7, pp. 10–13.

  16. Kozyukhin, S.A., Bedin, S.A., Rudakovskaya, P.G., Ivanova, O.S., and Ivanov, V.K., Dielectric properties of nanocrystalline tungsten oxide in the temperature range of 223–293 K, Semiconductors, 2018, vol. 52, no. 7, pp. 885–890.

    Article  CAS  Google Scholar 

  17. Radchuk, N.B. and Ushakov, A.Yu., Optical properties of transition metal nanocomposites, Nauchno-Tekh. Ved. S.-Peterb. Gos. Politekh. Univ., Fiz.-Matem. Nauki, 2012, no. 3, pp. 31–35.

  18. Shushunov, A.N., Novikov, V.A., and Grishin, I.A., Optical properties of Tm3+-doped TeO2–WO3 glasses, Inorg. Mater., 2011, vol. 47, no. 7, pp. 801–805.

    Article  CAS  Google Scholar 

  19. Bakovets, V.V., Ayupov, B.M., Danilovich, V.S., Maksimovskii, E.A., and Fedorinin, V.N., Analysis of optical properties of the polyimide film-glass system, Tech. Phys., 2009, vol. 54, pp. 1786–1789.

    Article  CAS  Google Scholar 

  20. Romanko, O.I. and Shapoval, V.N., Relationship of the chemical structure and thermal properties of polyimides, Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Ser.: Estestv. Nauki, 2016, no. 2, pp. 103–113.

  21. Johnston, T.H. and Gaulin, C.A., Thermal decomposition of polyimides in vacuum, J. Macromol. Sci., Part A: Pure Appl. Chem., 1969, vol. 6, pp. 1161–1182.

    Article  Google Scholar 

  22. Howard, C.J., Luca, V., and Knight, K.S., High temperature phase transitions in tungsten trioxide—the last word? J. Phys.: Condens. Matter, 2002, vol. 14, no. 3, p. 377.

    CAS  Google Scholar 

Download references

Funding

This work was carried out under a grant from the Russian Science Foundation (project no. 19-19-00316).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. I. Pavlenko, G. G. Bondarenko or N. I. Cherkashina.

Additional information

Translated by V. Selikhanovich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavlenko, V.I., Bondarenko, G.G. & Cherkashina, N.I. Physicomechanical Characteristics of Composite Based on Polyimide Matrix Filled with Tungsten Oxide. Inorg. Mater. Appl. Res. 11, 304–311 (2020). https://doi.org/10.1134/S2075113320020306

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113320020306

Keywords:

Navigation