Skip to main content
Log in

Investigation of Structural and Optical Homogeneity of LiNbO3:ZnO Crystals of Different Genesis

  • MATERIALS FOR ELECTRONICS
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

Nominally pure congruent LiNbO3 crystal and LiNbO3:ZnO ([ZnO] ~ 5.4–6.4 mol % in the melt) crystals of different genesis are studied using photoinduced light scattering, laser conoscopy, and X-ray diffraction (method of moments). The photorefractive properties and optical and structural uniformity are analyzed. It is found that LiNbO3:ZnO crystals obtained by direct solid phase doping have the best optical and structural uniformity, the lowest photorefractive sensitivity, and a high compositional uniformity along the polar axis. Crystals obtained by homogeneous doping are compositionally uniform, although their optical and structural uniformity is worse than those of LiNbO3:ZnO crystals obtained by direct solid phase doping. Anomalies of conoscopic patterns are caused by the presence of charged structural defects in LiNbO3:ZnO crystals and the distortion of the optical indicatrix induced by mechanical stresses and compositional inhomogeneity of the crystals. High temperature annealing in short-circuited state of LiNbO3:ZnO crystals with high dopant concentration leads to healing of charged defects and improvement of optical characteristics in general. The distribution coefficient for LiNbO3:ZnO crystals obtained by the homogeneous doping method is significantly higher than that for the crystals obtained by the direct solid phase doping method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig.4.

Similar content being viewed by others

REFERENCES

  1. Lines, M.E. and Glass, A.M., Principles and Applications of Ferroelectrics and Related Materials, Oxford: Clarendon, 1977.

    Google Scholar 

  2. Kuz’minov, Yu.S., Niobat i tantalat litiya – materialy dlya nelineinoi optiki (Lithium Niobate and Tantalate are the Materials for Nonlinear Optics), Moscow: Nauka, 1975.

  3. Gurzadyan, G.G., Dmitriev, V.G., and Nikogosyan, D.N., Nelineino-opticheskie kristally. Svoistva i primenenie v kvantovoi electronike (Nonlinear Optical Crystals: Properties and Applications in Quantum Electronics), Moscow: Radio i Svyaz’, 1991.

  4. Gunter, P. and Huidnard, J.-P., Photorefractive Materials and Their Applications, Berlin: Springer, 2006–2007, vols. 1–2.

  5. Sidorov, N.V., Volk, T.R., Mavrin, B.N., and Kalinnikov, V.T., Niobat litiya: defekty, fotorefraktsiya, kolebatel’nyi spectr, polaritony (Lithium Niobate: Defects, Photorefraction, Vibrational Spectra, and Polaritons), Moscow: Nauka, 2003.

  6. Volk, T. and Wöhlecke, M., Lithium Niobate: Defects, Photorefraction and Ferroelectric Switching, Berlin: Springer-Verlag, 2008.

    Google Scholar 

  7. Abdi, F., Aillerie, M., Fontana, M., Bourson, P., Volk, T., Maximov, B., Sulyanov, S., Rubinina, N., and Wöhlecke, M., Influence of Zn doping on electro optical properties and structure parameters of lithium niobate crystals, Appl. Phys. B, 1999, no. 68, pp. 795–799.

  8. Voskresenskii, V.M., Starodub, O.R., Sidorov, N.V., and Palatnikov, M.N., Investigation of the cluster formation in lithium niobate crystals by computer modeling method, Crystallogr. Rep., 2017, vol. 62, no. 2, pp. 205–209.

  9. Palatnikov, M.N., Sandler, V.A., Sidorov, N.V., and Makarova, O.V., Anomalous dielectric and piezoelectric properties and electrical conductivity of heavily doped LiNbO3:Zn crystals, Inorg. Mater., 2016, vol. 52, no. 2, pp. 147–152.

    Article  CAS  Google Scholar 

  10. Masloboeva, S.M., Palatnikov, M.N., Arutyunyan, L.G., and Ivanenko, D.I., Methods for producing doped lithium niobate charge for growth of single crystals, Izv. S.-Peterb. Gos. Tekh. Univ., 2017, no. 38 (64), pp. 34–43.

  11. Maksimenko, V.A., Syui, A.V., and Karpets, Yu.M., Photoindutsirovannye protsessy v kristallakh niobata litiya (Photoinduced Processes in Lithium Niobate Crystals), Moscow: Fizmatlit, 2008.

  12. Pikul’, O.Yu., Kulikova, G.V., and Stroganov, V.I., Transformation of conoscope pictures of crystal with a change in the optical observation system, Izv. Vyssh. Uchebn. Zaved., Priborostr., 2013, no. 1, pp. 55–58.

  13. Pikul’, O.Yu., Alekseeva, L.V., Povkh, I.V., Stroganov, V.I., Rudoi, K.A., Tolstov, E.V., and Krishtop, V.V., Particularities of optical system for obtaining of conoscope pictures of big size, Izv. Vyssh. Uchebn. Zaved., Priborostr., 2004, no. 12, pp. 53–55.

  14. Rusakov, A.A., Rentgenografiya metallov (Metal Radiography), Moscow: Atomizdat, 1977.

  15. Fingerland, A., Method of moments in analysis of X-ray diffraction lines, Czech. J. Phys., 1960, vol. 10, no. 3, pp. 233–239.

    Article  CAS  Google Scholar 

  16. Mitra, G.B., Theoretical model of diffraction line profiles as combinations of Gaussian and Cauchy distributions, J. Cryst. Process Technol., 2014, vol. 4, pp. 145–155.

    Article  Google Scholar 

  17. Sidorov, N.V., Pikoul, O.Yu., Kruk, A.A., Teplyakova, N.A., Yanichev, A.A., and Palatnikov, M.N., Complex investigations of structural and optical homogeneities of low-photorefractivity lithium niobate crystals by the conoscopy and photoinduced and Raman light scattering methods, Opt. Spectrosc., 2015, vol. 118, no. 2, pp. 259–268.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Palatnikov.

Additional information

Translated by V. A. Alekseev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palatnikov, M.N., Sidorov, N.V., Kadetova, A. et al. Investigation of Structural and Optical Homogeneity of LiNbO3:ZnO Crystals of Different Genesis. Inorg. Mater. Appl. Res. 11, 320–329 (2020). https://doi.org/10.1134/S207511332002029X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S207511332002029X

Keywords:

Navigation