Skip to main content
Log in

Heat-Resistant RuAl-Based Alloys: Part I. Cast Alloys

  • PHYSICOCHEMICAL PRINCIPLES OF CREATING MATERIALS AND TECHNOLOGIES
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

Refractory ruthenium monoaluminide RuAl, a heat-resistant material with the melting point tmp = 2100°C, lighter than nickel superalloys—the density ρ = 7.97 g/cm3—is considered to be a promising candidate for high-temperature applications under relatively low loads in high-speed oxidizing gas flows at temperatures higher than not only the operating (top) but also the melting (tmp) temperatures of both nickel superalloys and nickel and titanium aluminides. RuAl is also an ideal candidate for protective coatings of critical components of the hot gas path of gas turbine and rocket engines. In the first part of the article, the authors consider the principles of selecting the alloying systems and the methods for production of single-phase or heterophase RuAl cast alloys and changes in their structural and phase states under cold and hot deformation and provide data on the mechanical properties within a wide range of temperatures, the oxidation resistance and the resistance to some corrosive media, and the plasma erosion resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Broomfield, R.W., Ford, D.A., Bhangu, H.K., Thomas, M.C., Fraiser, D.J., Burkhoider, P.S., Harris, K., Ericson, G.L., and Wahl, J.B., Development and turbine engine performance of advanced rhenium containing superalloys for single crystal and directionally solidified airfoils, Proc. Int. Symp. on Rhenium and Rhenium Alloys, Orlando, Briskin, B., Ed., Warrendale, PA: Miner., Met. Mater. Soc., 1997, pp. 731–753.

  2. Petrushin, N.V. and Svetlov, I.L., Physicochemical and structural characteristics of nickel-based superalloys, Russ. Metall. (Engl. Transl.), 2001, no. 2, pp. 168–177.

  3. Murakami, H., Honmo, T., Koizumi, Y., and Hakada, H., Distribution of platinum group metals in Ni-base single-crystal superalloys, Proc. 9th Int. Symp. on Superalloys “Superalloys 2000,” Pollock, T.M., Ed. Warrendale, PA: Miner., Met. Mater. Soc., 2000, pp. 747–756.

  4. Povarova, K.B., Physicochemical principles for the creation of thermally stable alloys based on transition metal aluminides, Part 1, Materialovedenie, 2007, no. 12, pp. 20–27; Povarova, K.B., Physicochemical principles for the creation of thermally stable alloys based on transition metal aluminides, Part 2, Materialovedenie, 2008, no. 1, pp. 29–39.

  5. Nochovnaya, N.A., Bazyleva, O.A., Kablov, D.E., and Panin, P.V., Intermetallidnye splavy na osnove titana i nikelya (Intermetallic Alloys Based on Titanium and Nickel), Kablov, E.N., Ed., Moscow: Vseross. Nauchno-Issled. Inst. Aviats. Mater., 2018.

    Google Scholar 

  6. Intermetallic Compounds: Principles and Practice, Westbrook, J.H. and Fleicher, R.L., Eds., New York: Wiley, 1994, vol. 2, pp. 237–256

    Google Scholar 

  7. Guitar, M.A., Moore, E.R., and Mucklich, F., The influence of impurities on the formation of protective aluminium oxides on RuAl thin films, J. Alloys Compd., 2014, vol. 594, pp. 165–170.

    Article  CAS  Google Scholar 

  8. Guitar, M.A., Aboulfadl, H., Pauly, C., Leibenguth, P., Migot, S., and Mucklich, F., Production of single-phase intermetallic films from Ru–Al multilayers, Surf. Coat. Technol., 2014, vol. 244, pp. 210–216.

    Article  CAS  Google Scholar 

  9. Mucklich, F. and Ilic, N., RuAl and its alloys. Part I. Structure, physical properties, microstructure and processing, Intermetallics, 2005, vol. 13, pp. 5–21.

    Article  CAS  Google Scholar 

  10. Mucklich, F., Ilic, N., and Woll, K., RuAl and its alloys. Part II: Mechanical properties, environmental resistance and applications, Intermetallics, 2008, vol. 16, pp. 593–608.

    Article  Google Scholar 

  11. Povarova, K.B., Drozdov, A.A., Bulakhtina, M.A., Antonova, A.V., Morozov, A.E., Bazyleva, O.A., Bondarenko, Yu.A., Arginbaeva, E.G., and Nefedov, D.G., Effect of the method of producing Ni3Al-based alloy single crystals on the macro- and microhomogeneity of component distribution, structure, and properties, Russ. Metall. (Engl. Transl.), 2014, vol. 2014, no. 5, pp. 382–391.

  12. Povarova, K.B., Kazanskaya N.K., Drozdov A.A., Bannykh I.O., and Morozov, A.E., Structure and properties of alloyed RuAl-based cast alloys, Russ. Metall. (Engl. Transl.), 2004, no. 6, pp. 581–585.

  13. Petzow, G. and Effenberg, G., Ternary Alloys: A Comprehensive Compendium of Evaluated Constitutional Data and Phase Diagrams, New-York: Wiley, 1990, vol. 3.

  14. Diagrammy sostoyaniya dvoynykh metallicheskikh sistem: Spravochnik (State Diagrams of Binary Metal Systems: Handbook), Lyakishev, N.P., Ed., Moscow, in 3 vols., Mashinostroenie, 1996, 1997, 2000–2001.

  15. Povarova, K.B., Kazanskaya, N.K., Drozdov, A.A., and Skachkov, O.A., Refractory intermetallic compound RuAl as a basis of less-traditional superalloys, Russ. Metall. (Engl. Transl.), 2002, no. 3, pp. 235–245.

  16. Huang, S., Zhang, C.H., Li, R.Z., Shen, J., and Chen, N.X., Site preference and alloying effect on elastic properties of ternary B2 RuAl-based alloys, Intermetallics, 2014, vol. 51, pp. 24–29.

    Article  CAS  Google Scholar 

  17. Povarova, K.B., Morozov, A.E., Drozdov, A.A., and Kazanskaya, N.K., Development of RuAl-based cast alloys, Russ. Metall. (Engl. Transl.), 2011, vol. 2011, no. 9, pp. 865–874.

  18. Fleischer, R.L., effects of composition on the mechanical properties of tough, high-temperature intermetallic compounds, ISIJ Int., 1991, vol. 31, no. 10, pp. 1186–1191.

    Article  CAS  Google Scholar 

  19. Fleischer, R.L., US Patent 5 152 853, 1992.

  20. Fleischer, R.L., Field, R.D., and Briant, C.L., Mechanical properties of high-temperature alloys of AlRu, Metall. Trans. A, 1991, vol. 22, no. 2, pp. 403–414.

    Article  Google Scholar 

  21. Nandy, T.K., Feng, Q., and Pollock, T.M., Elevated temperature deformation and dynamic strain aging in polycrystalline RuAl alloys, Intermetallics, 2003, vol. 11, pp. 1029–1038.

    Article  CAS  Google Scholar 

  22. Wolff, I.M. and Hill, P.J., Platinum metals-based intermetallics for high-temperature service, Platinum Met. Rev., 2000, vol. 44, no. 4, pp. 158–166.

    CAS  Google Scholar 

  23. Fleischer, R.L., Solid solution hardening of intermetallic compounds, Proc. Materials Research Society Symp., Pittsburgh, PA: Mater. Res. Soc., 1993, vol. 288, pp. 165–170.

  24. Fleischer, R.L., US Patent 5 011 554, 1991.

  25. Lu, D.C. and Pollock, T.M., Low temperature deformation and dislocation substructure of ruthenium aluminide polycrystals, Acta Mater., 1999, vol. 47, no. 3, pp. 1035–1042.

    Article  CAS  Google Scholar 

  26. Eow, K., Lu, D., and Pollock, T.M., Rate sensitivities for low temperature deformation in ruthenium aluminide alloys, Scr. Mater., 1998, vol. 38, no. 7, pp. 1065–1069.

    Article  CAS  Google Scholar 

  27. Chokshi, A.H., Rosen, A., Karch, J., and Gleiter, H., On the validity of the hall-petch relationship in nanocrystalline materials, Scr. Mater., 1989, vol. 23, no. 10, pp. 1679–1683.

    CAS  Google Scholar 

  28. Cao, F. and Pollock, T.M., Deformation mechanisms in a Ru–Ni–Al ternary B2 intermetallic alloy, Acta Mater., 2007, vol. 55, no. 8, pp. 2715–2727.

    Article  CAS  Google Scholar 

  29. Povarova, K.B., Kazanskaya, N.K., Drozdov, A.A., and Skachkov, O.A., Effect of deformation and recrystallization on the structure and some properties of RuAl-based alloys, Russ. Metall. (Engl. Transl.), 2004, vol. 2004, no. 6, pp. 586–589.

  30. The Science of Hardness Testing and Its Research Applications, Metal Park, OH: Am. Soc. Met. 1973.

  31. Markovets, M.P., Opredeleniye mekhanicheskikh svoistv metallov po tverdosti (Determination of the Mechanical Properties of Metals by Hardness), Moscow: Mashinostroenie, 1979.

  32. Povarova, K.B., Drozdov, A.A., Kazanskaya, N.K., Titova, T.F., and Bannykh, I.O., Hot-hardness estimation of the high-temperature strength of cast alloys based on RuAl and other monoaluminides, Russ. Metall. (Engl. Transl.), 2003, vol. 2003 no. 2, pp. 125–131.

  33. Povarova, K.B., Antonova, A.V., Zavarzina, E.K., and Titova, T.F., Rapid estimation of the high-temperature strength of TiAl-based casting alloys, Russ. Metall. (Engl. Transl.), 2003, vol. 2003, no. 1, pp. 73–78.

  34. Guitar, M.A. and Mucklich, F., Isothermal oxidation behaviour of nanocrystalline RuAl intermetallic thin films, Oxid. Met., 2013, vol. 80, pp. 423–436.

    Article  CAS  Google Scholar 

  35. Wopersnow, W. and Raub, C.J., Eigenschaften einiger binnrer intermetallischer phasen des Palladiums und Rutheniums mit anderen Metallen, Metall, 1979, vol. 33, no. 7, pp. 736–740.

    CAS  Google Scholar 

  36. McEwan, J.J. and Biggs, T., Proc. 13th Int. Corrosion Congr., Melbourne, Clayton, Vic: Aust. Corros. Assoc., 1996, p. 25.

  37. Robert Bosch GmbH, Gasoline-Engine Management, Wiesbaden: Wiley, 1998, 1st ed.

    Google Scholar 

  38. Wolff, I.M., Sauthoff, G., Cornish, L.A., Steyn, H., Coetzee, R., Nathal, M.V., Darolia, R., Liu, C.T., Martin, P.L., Miracle, D.B., Wagner, R., and Yamaguchi, M., Structural Intermetallics, Warrendale, PA: Miner., Met. Mater. Soc., 1997, pp. 815–823.

    Google Scholar 

  39. Graff, M., Kempf, B., and Breme, J., Abbrandfeste iridiumlegierung für zündkerzenelektroden, Metall, 1999, vol. 53, no. 11, pp. 616–621.

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was performed according to a state assignment, project no. 075-00746-19-00.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. B. Povarova, A. E. Morozov or A. A. Drozdov.

Additional information

Translated by O. Lotova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Povarova, K.B., Morozov, A.E. & Drozdov, A.A. Heat-Resistant RuAl-Based Alloys: Part I. Cast Alloys. Inorg. Mater. Appl. Res. 11, 277–286 (2020). https://doi.org/10.1134/S2075113320020318

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113320020318

Keywords:

Navigation