Skip to main content
Log in

Spatial Modeling of the Range and Long-Term Climatogenic Dynamics of Ambrosia L. Species in the Caucasus

  • Published:
Russian Journal of Biological Invasions Aims and scope Submit manuscript

Abstract

The main limiting factors for living of Ambrosia artemisiifolia L. in the Caucasus are the incoming solar energy flux in January (5250–5950 kJ m–2 day–1) and slope (0°–17.5°). The limiting factors for A. trifida L. are wind speed in February (2–2.4 m/s) and the incoming solar energy flux in December (4400–4800 kJ m–2 day–1). In accordance with the predicted trends of climate change by 2050, it is possible to expect the expansion of the total area of potentially suitable for the species habitats by a factor of 1.95 (A. artemisiifolia) and 9.78 (A. trifida) (20 295.29 and 34817.82 km2). The area of optimal habitats may increase by 2.48 and 11.78 times, respectively (9932.73 and 18 914.11 km2), including the mountainous territoties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Abramova, L.M., Classification of communities with invasive species in the Southern Urals. I. Communities involving species of the genus Ambrosia L., Rast. Ross., 2011, no. 19, pp. 3–28.

  2. Abramova, L.M., Distribution of invasive species of Ambrosia L. genus in the South Urals (Republic of Bashkortostan), Russ. J. Biol. Invasions, 2018, vol. 9, pp. 1–8.

    Article  Google Scholar 

  3. Akatova, T.V. and Akatov, V.V., Distribution of adventive plant species in the Caucasian Reserve, Tr. Kavk. Gos. Prirod. Biosfern. Zapoved., 2013, no. 20, pp. 84–109.

  4. Akatova, T.V., Akatov, V.V., Eskina, T.G., and Zagurnaya, Yu.S., On the distribution of some invasive species of grasses in Western Caucasus, Ekol. Vestn. Sev. Kavk., 2009, vol. 5, no. 2, pp. 41–50.

    Google Scholar 

  5. Baldwin, R.A., Use of maximum entropy modeling in wildlife research, Entropy, 2009, vol. 11, no. 4, pp. 854–866.

    Article  Google Scholar 

  6. Buckley, A., Understanding curvature rasters, 2010. https://blogs.esri.com/esri/arcgis/2010/10/27/understanding-curvature-rasters. Accessed August 10, 2019.

  7. Chadaeva, V.A., Shkhagapsoeva, K.A., Tsepkova, N.L., and Shkhagapsoev, S.Kh., Monitoring of Ambrosia artemisiifolia L. distribution in meadow phytocenoses of Kabardino-Balkarian Republic (Central Caucasus), Russ. J. Biol. Invasions, 2018, vol. 9, pp. 195–203.

    Article  Google Scholar 

  8. Dgebuadze, Yu.Yu., Invasions of alien species in Holarctic: some results and perspective of investigations, Russ. J. Biol. Invasions, 2014, vol. 5, pp. 61–64.

    Article  Google Scholar 

  9. Dimitriev, A.V., Abramov, N.V., Minizon, I.L., Papchenkov, V.G., Puzyrev, A.N., Rakov, N.S., and Silaeva, T.B., Distribution of Ambrosia artemisiifolia (Asteraceae) in the Volga–Kama oblast, Bot. Zh., 1994, vol. 79, no. 1, pp. 79–83.

    Google Scholar 

  10. Dong, H., Li, Y., Wang, Q., and Yao, G., Impacts of invasive plants on ecosystems in natural reserves in Jiangsu of China, Russ. J. Ecol., 2011, vol. 42, no. 2, pp. 133–137.

    Article  Google Scholar 

  11. Efimova, V.A., Komzha, A.L., and Popov, K.P., New records of adventive plants in the Central Caucasus, Bot. Zh., 1997, vol. 82, no. 3, pp. 149–153.

    Google Scholar 

  12. Elith, J. and Leathwick, J.R., Species distribution models: ecological explanation and prediction across space and time, Annu. Rev. Ecol., Evol. Syst., 2009, vol. 40, pp. 677–697.

    Article  Google Scholar 

  13. Elith, J., Graham, C.H., Anderson, R.P., Dudik, M., et al., Novel methods improve prediction of species’ distributions from occurrence data, Ecography, 2006, vol. 29, no. 2, pp. 129–151.

    Article  Google Scholar 

  14. Esipenko, L.P., Formation of consortion relations in the system of phytophage–host on the example of adventive organisms Zygogramma suturalis (F.) (Coleoptera, Chrysomelidae), Tarachidia candefacta Hübner (Lepidoptera, Noctuidae) and Ambrosia artemisiifolia L. (Ambrosieae, Asteraceae) in the Southern Russia and the Russian Far East, Extended Abstract of Doctoral (Biol.) Dissertation, Krasnodar, 2015.

  15. Fifth Assessment Report (AR5). https://www.ipcc.ch/ report/ar5/syr/. Accessed June 7, 2019.

  16. Gentili, R., Asero, R., Caronni, S., Guarino, M., Montagnani, Ch., Mistrello, G., and Citterio, S., Ambrosia artemisiifolia L. temperature-responsive traits influencing the prevalence and severity of pollinosis: a study in controlled conditions, BMC Plant Biol., 2019, vol. 19, p. 155.

    Article  Google Scholar 

  17. Glubsheva, T.N. and Karpushina, E.N., Allelopathy of Ambrosia artemisiifolia L., Nauch. Ved. Belgorod. Gos. Univ., 2009, no. 9 (2), pp. 5–9.

  18. Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G., and Jarvis, A., Very high resolution interpolated climate surfaces for global land areas, Int. J. Climatol., 2005, vol. 25, pp. 1965–1978.

    Article  Google Scholar 

  19. IPSL-CM5 (IPSL Earth System Model for the 5th IPCC report), 2015. https://portal.enes.org/models/earthsystem-models/ipsl/ipslesm. Accessed August 10, 2019.

  20. Komzha, A.L. and Popov, K.P., New data on the adventive flora of the North Ossetia region, Bot. Zh., 1990, vol. 75, no. 1, pp. 108–110.

    Google Scholar 

  21. Lambdon, P.W., Pyšek, P., Basnou, C., Hejda, M., Arianoutso, M., Ess, F., Jarošik, V., Pergl, J., Winter, M., Nastasiu, P., Andriopoulos, P., Bazos, I., Brundu, G., Celesti-Grapow, L., Chassot, P., et al., Alien flora of Europe: species diversity, temporal trends, geographical patterns and research needs, Preslia, 2008, vol. 80, no. 2, pp. 101–149.

    Google Scholar 

  22. Lamsal, P., Kumar, L., Aryal, A., et al., Invasive alien plant species dynamics in the himalayan region under climate change, AMBIO, 2018, vol. 47, no. 6, pp. 697–710.

    Article  CAS  Google Scholar 

  23. Luchinskii, S.I. and Makoveev, A.V., Ambrosia artemisiifolia in the sunflower crops, Nauch. Zh. KubGAU, 2011, no. 69 (05), pp. 179–187.

  24. Makaeva, A.Z. and Okazova, Z.P., Floristic structure of weed plants of maize crops in the forest–steppe zone of the Chechen Republic, Sovrem. Probl. Nauki i Obraz., 2016, no. 6, p. 507.

  25. Moore, I.D., Grayson, R.B., and Ladson, A.R., Digital terrain modelling: a review of hydrological, geomorphological, and biological applications, Hydrol. Process., 1991, vol. 5, no. 1, pp. 3–30.

    Article  Google Scholar 

  26. Moskalenko, G.P., Karantinnye sornye rasteniya Rossii (Quarantine Weeds in Russia), Moscow: Rosgoskarantin, 2001.

  27. Nikitin, V.V., Sornye rasteniya flory SSSR (Weed Plants of the USSR Flora), Moscow: Nauka, 1983.

  28. Osertak, G.A. and Morozova, E.V., Karantinnye rasteniya (sornyaki) (Quarantine Plants (Weeds)), Khvoinaya, 2014.

  29. Panda, R.M. and Behera, M.D., Assessing harmony in distribution patterns of plant invasions: a case study of two invasive alien species in India, Biodivers. Conserv., 2018, vol. 27, no. 11, pp. 1–14.

    Article  Google Scholar 

  30. Pauchard, A. and Shea, K., Integrating the study of non-native plant invasions across spatial scales, Biol. Invasions, 2006, vol. 8, no. 3, pp. 399–413.

    Article  Google Scholar 

  31. Pauchard, A., Milbau, A., Albihn, A., Alexander, J., Burgess, T., Daehler, C., Englund, G., Essl, F., et al., Non-native and native organisms moving into high elevation and high latitude ecosystems in an era of climate change: new challenges for ecology and conservation, Biol. Invasions, 2016, vol. 18, no. 2, pp. 345–353.

    Article  Google Scholar 

  32. Pitsunda-Myusserskii zapovednik (Pizunda-Mussersky Reserve), Bebiya, S.M., Ed., Moscow: Agropromizdat, 1987.

    Google Scholar 

  33. Ramirez, C.E. and Macías, G.C., Limited options for native goodeid fish simultaneously confronted to climate change and biological invasions, Biol. Invasions, 2015, vol. 17, no. 1, pp. 245–256.

    Article  Google Scholar 

  34. Reznik, S.Ya., Factors determining the range boundaries and population density of Ambrosia artemisiifolia L. (Asteraceae) and ragweed leaf beetle Zygogramma suturalis F. (Coleoptera, Chrysomelidae), Vestn. Zashch. Rast., 2009, no. 2, pp. 20–28.

  35. Samye opasnye invazionnye vidy Rossii (Top-100) (The Most Dangerous Invasive Species in Russia (Top-100)), Dgebuadze, Yu.Yu., Petrosyan, V.G., and Khlyap, L.A., Eds., Moscow: KMK, 2018.

    Google Scholar 

  36. Sheppard, A.W., Shaw, R.H., and Sforza, R., Top-20 environmental weeds for classical biological control in Europe: a review of opportunities, regulations and other barriers to adoption, Weed. Res., 2006, vol. 46, pp. 92–117.

    Article  Google Scholar 

  37. Shkhagapsoev, S.Kh., Chadaeva, V.A., Tsepkova, N.L., and Shkhagapsoeva, K.A., Materials for the Blacklist of the Central Caucasus Flora (for the Kabardino-Balkar Republic), Russ. J. Biol. Invasions, 2018, vol. 9, pp. 384–391.

    Article  Google Scholar 

  38. Shuai, F., Lek, S., Li, X., and Zhao, T., Biological invasions undermine the functional diversity of fish community in a large subtropical river, Biol. Invasions, 2018, vol. 20, no. 10, pp. 2981–2996.

    Article  Google Scholar 

  39. Sitnikova, N.V., Karantinnye sornye rasteniya (Quarantine Weed Plants), Kazan: Kazan. Fed. Univ., 2013.

  40. Studley, H. and Weber, K.T., Comparison of image re-sampling techniques for satellite imagery, in Final Report:Assessing Post-Fire Recovery of Sagebrush-Steppe Rangelands in Southeastern Idaho, 2011, pp. 185–196.

    Google Scholar 

  41. Terauds, A., Chown, S.L., Morgan, F., Peat, H.J., Watts, D.J., Keys, H., Convey, P., and Bergstrom, D.M., Conservation biogeography of the Antarctic, Divers. Distrib., 2012, vol. 18, pp. 726–741.

    Article  Google Scholar 

  42. Terekhina, T.A., Quarantine weed plants in the South Siberia, Mater. XIV Mezhd. nauchno-prakt. konf. “Problemy botaniki Yuzhnoi Sibiri i Mongolii” (Proc. XIV Int. Sci.-Pract. Conf. “Botany Problems in the Southern Siberia and Mongolia”), Barnaul: Altai. Gos. Univ., 2015, pp. 41–46.

  43. Tolstikova, T.N., Ednich, E.M., and Kuasheva, D.A., Representatives of the Asteraceae family in Maikop’s urban flora, Mater. II Mezhd. nauchno-prakt. konf. “Bioraznoobrazie, Biokonservatsiya, Biomonitoring” (Proc. II Int. Sci.-Pract. Conf. “Biodiversity, Biopreservation, Biomonitoring”), Maikop, 2015, pp. 125–130.

  44. Vasil’ev, D.S., Ambroziya polynnolistnaya i mery bor’by (Ambrosia artemisiifolia L. and the Measures to Control It), Krasnodar: Krasnodar Knizhn. Izd., 1958.

  45. Vinogradova, Yu.K., Maiorov, S.R., and Khorun, L.V., Chernaya kniga flory Srednei Rossii (The Black Book of Flora in the Central Russia), Moscow: GEOS, 2010.

  46. Zevenbergen, L.W. and Thorne, C.R., Quantitative analysis of land surface topography, Earth Surf. Proc. Land., 1987, vol. 12, no. 1, pp. 47–56.

    Article  Google Scholar 

Download references

Funding

The studies were carried out as part of state assignment no. 075-00347-19-00 on the topic “Patterns of the Spatiotemporal Dynamics of Meadow and Forest Ecosystems in Mountainous Areas (Russian Western and Central Caucasus).”

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. H. Pshegusov, V. A. Chadaeva or A. L. Komzha.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

The article does not contain any research involving animals in experiments performed by any of the authors.

CONFLICTS OF INTEREST

The authors declare no conflict of interest.

APPENDIX

APPENDIX

GPS coordinates of the habitats of A. artemisiifolia used in the analysis:

43°76′87″ N,

43°36′57″ E;

43°76′04″ N,

43°37′05″ E;

43°66′65″ N,

43°41′02″ E;

43°78′82″ N,

43°15′81″ E;

43°76′79″ N,

43°28′24″ E;

43°73′56″ N,

42°96′68″ E;

43°85′59″ N,

43°13′81″ E;

43°81′46″ N,

43°12′03″ E;

43°45′82″ N,

42°99′79″ E;

43°46′18″ N,

42°99′16″ E;

43°22′90″ N,

42°65′56″ E;

43°22′99″ N,

42°65′27″ E;

43°25′55″ N,

42°63′96″ E;

43°25′88″ N,

42°64′19″ E;

43°25′66″ N,

42°51′54″ E;

43°63′82″ N,

43°54′95″ E;

43°65′14″ N,

43°52′00″ E;

43°22′72″ N,

43°55′97″ E;

43°78′26″ N,

42°96′24″ E;

43°39′77″ N,

42°92′22″ E;

43°10′95″ N,

43°14′73″ E;

43°66′42″ N,

44°01′83″ E;

43°82′76″ N,

43°80′26″ E;

43°48′06″ N,

44°10′01″ E;

43°57′39″ N,

43°74′55″ E;

43°35′85″ N,

43°93′10″ E;

44°17′31″ N,

40°10′42″ E;

43°39′39″ N,

39°39′26″ E;

43°33′31″ N,

39°49′20″ E;

43°38′42″ N,

39°44′12″ E;

45°12′44″ N,

39°40′52″ E;

44°49′06″ N,

38°23′07″ E;

44°36′37″ N,

40°06′13″ E;

45°00′04″ N,

37°13′07″ E;

43°05′11″ N,

40°48′09″ E;

44°17′31″ N,

40°10′43″ E;

44°53′45″ N,

37°57′50″ E;

42°58′30″ N,

41°04′42″ E;

43°01′32″ N,

40°57′38″ E;

44°09′93″ N,

43°00′72″ E;

44°76′57″ N,

42°00′22″ E;

42°70′60″ N,

47°62′923″ E;

42°92′97″ N,

47°45′05″ E;

43°01′60″ N,

47°24′72″ E;

44°08′86″ N,

40°01′63″ E;

43°99′42″ N,

40°13′63″ E;

43°88′43″ N,

40°71′74″ E;

43°93′55″ N,

40°68′46″ E;

43°17′70″ N,

45°23′28″ E;

43°24′43″ N,

45°30′85″ E;

43°17′39″ N,

46°03′23″ E;

43°08′54″ N,

45°89′06″ E;

43°25′95″ N,

44°97′713″ E;

43°29′045″ N,

46°67′42″ E;

42°98′74″ N,

47°44′26″ E;

44°23′97″ N,

42°02′52″ E;

43°29′24″ N,

41°62′95″ E;

43°44′26″ N,

41°74′64″ E;

43°46′17″ N,

44°39′13″ E;

43°20′00″ N,

44°24′44″ E;

43°19′040″ N,

44°12′45″ E;

43°16′01″ N,

44°16′12″ E;

43°08′05″ N,

44°25′20″ E;

43°12′56″ N,

44°23′44″ E;

43°13′11″ N,

44°20′51″ E;

43°07′35″ N,

44°27′36″ E;

43°09′13″ N,

44°23′56″ E;

43°09′40″ N,

44°24′24″ E;

43°12′06 ″ N,

44°23′40″ E;

43°07′09″ N,

44°30′58″ E;

43°09′28″ N,

44°21′11″ E;

43°04′00″ N,

44°27′28″ E;

43°04′26″ N,

44°28′03″ E;

42°59′55″ N,

44°23′08″ E;

42°53′47″ N,

43°42′13″ E;

43°00′30″ N,

43°47′55″ E;

42°47′43″ N,

44°00′25″ E;

42°49′32″ N,

44°12′35″ E;

42°47′34″ N,

43°55′22′ E;

42°49′07″ N,

44°15′20″ E;

42°49′16″ N,

44°14′26″ E;

42°55′26″ N,

44°28′03″ E;

42°50′26″ N,

44°30′43″ E;

42°47′28″ N,

44°37′56″ E;

43°01′59″ N,

44°45′25″ E

    

GPS coordinates of the habitats of A. trifida used in the analysis:

43°27′31″ N,

44°01′89″ E;

43°25′84″ N,

44°01′11″ E;

44°09′92″ N,

43°00′77″ E;

44°63′65″ N,

40°08′38″ E;

44°62′19″ N,

40°16′32″ E;

43°17′012″ N,

40°33′78″ E;

43°14′67″ N,

45°75′75″ E;

43°14′73″ N,

45°24′94″ E;

43°22′29″ N,

45°06′38″ E;

43°17′31″ N,

46°03′27″ E;

43°08′54″ N,

45°89′07″ E;

43°47′15″ N,

44°39′02″ E;

43°11′19″ N,

44°01′18″ E;

43°16′05″ N,

44°16′06″ E;

43°16′05″ N,

44°17′22″ E;

43°17′17″ N,

44°29′00″ E;

43°13′10″ N,

44°23′20″ E;

43°14′10″ N,

44°20′17″ E;

43°13′10″ N,

44°20′50″ E;

43°12′14″ N,

44°23′30″ E;

43°11′45″ N,

44°32′42″ E;

43°03′20″ N,

44°47′36″ E;

43°09′28″ N,

44°21′11″ E;

43°00′46″ N,

44°38′46″ E;

43°03′20″ N,

44°38′37″ E;

43°04′05″ N,

44°37′07″ E;

43°04′33″ N,

44°39′42″ E;

43°02′21″ N,

44°41′59″ E;

43°00′58″ N,

44°13′28″ E;

43°05′25″ N,

44°20′35″ E;

43°10′44″ N,

44°17′39″ E;

42°48′59″ N,

44°15′00″ E

  

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pshegusov, R.H., Chadaeva, V.A. & Komzha, A.L. Spatial Modeling of the Range and Long-Term Climatogenic Dynamics of Ambrosia L. Species in the Caucasus. Russ J Biol Invasions 11, 74–84 (2020). https://doi.org/10.1134/S2075111720010105

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075111720010105

Keywords:

Navigation