Skip to main content
Log in

A Method for Positioning and Timing Support of Remote Users based on Mobile Radio Interferometry

  • Published:
Gyroscopy and Navigation Aims and scope Submit manuscript

Abstract

The results of a comparative analysis of methods for positioning and timing support of remote users based on GNSS measurements from a GLONASS receiver and observational data on quasar radiation from compact very long base radio interferometric (VLBI) systems are discussed. Using radio telescope measurements increases the stability of positioning-and-timing and navigation support of users owing to observations of radio-frequency radiation emitted by the sources of natural origin. The approach proposed in this paper focuses on using radio interferometry for precision positioning and timing of remote radio telescopes. This method can be helpful for specific applications relevant to positioning and timing support for remote users with an arbitrary positioning topology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Shebshaevich, V.S., Dmitriev, P.P., and Ivantsevich, N.V., Setevye sputnikovye radionavigatsionnye sistemy (Network Satellite Radio Navigation Systems), Shebshaevich V.S., Ed., Moscow: Radio i svyaz’, 1993.

  2. Dulevich, V.E., Teoreticheskie osnovy radiolokatsii: Uchebnoe posobie dlya vuzov (Theoretical Foundations of Radiolocation: A Textbook for High Schools), Dulevich, V.E., Ed., Moscow: Sov. Radio, 1978.

    Google Scholar 

  3. Gubin, V.A., Klyuev, N.F., Kostylev, A.A., Mel’nikov, B.G., Stepanov, M.G., and Tkachev, E.A., Osnovy radionavigatsionnykh izmerenii (Fundamentals of Radio Navigation Measurements), Moscow: MO SSSR, 1987.

  4. Moduli pervogo pokoleniya GNSS GLONASS/GPS (Modules of the 1st Generation GNSS GLONASS/GPS—1K-161, K-161). http://rirt.ru/ru/products. Accessed January 17, 2018.

  5. Navigatsionnyi priemnik 1K-161-42 sputnikovykh sistem GLONASS/GPS (Navigation receiver 1K-161-42 of satellite systems GLONASS/GPS). http://www.glonass-portal.ru/catalog/modules/1k161. Accessed January 17, 2018.

  6. Antonovich, K.M., Ispo’zovanie sputnikovykh radionavigatsioonykh sistem v geodezii (Application of Satellite Radio Navigation Systems in Geodesy), Vol. 1, Moscow: FGUP Kartotsentr, 2005.

  7. Antonovich, K.M., Ispol’zovanie sputnikovykh radionavigatsioonykh sistem v geodezii (Application of Satellite Radio Navigation Systems in Geodesy), Vol. 2, Moscow: FGUP Kartotsentr, 2005.

  8. Ivanov, D.V., Mardyshkin, V.V., Lavrov, A.S., and Yevstigeev, A.A., A tri-band receiving system for radio telescopes with small antennas, St. Petersburg, Trudy Instituta prikladnoi astronomii RAN (Proceedings of the Institute of Applied Astronomy of the Russian Academy of Sciences), 2013, vol. 27, pp. 197–201.

  9. Ivanov, D.V., Ipatov, A.V., Gayazov, I.S. et al., Assessment of the feasibility of using small-sized VLBI systems to solve the problems of positioning and timing navigation support, Presentation at KVNO-2017, April, 17–21, 2017, St. Petersburg

  10. Surkis, I.F., Zimovskii, V.F., Ken, V.O., Kurdubova, Ya.L., Mishin, V.Yu., Mishina, N.A., and Shantyr’, V.A., Program correlator for processing observation of the VLBI nerwork of small antennas. First test results, Trudy Instituta prikladnoi astronomii RAN (Proceedings of the Institute of Applied Astronomy of the Russian Academy of Sciences), 2016, vol. 37, pp. 19–22.

  11. Dugin, N.A., Gavrilenko, V.G., Antipenko, A.A. et al., Radio interferometer with independent reception of NNGU–NIRFI–Irbene. First results, Vestnik Nizhegorodskogo universiteta im. N.I. Lobachevskogo, 2013, no. 1(1), pp.79–85.

  12. Aivazyan, S.A., Prikladnaya statistika. Osnovy ekonometriki (Applied statistics. Fundamentals of Econometrics), Vol. 2, Moscow: Yuniti-Dana, 2001.

  13. Aleshkin, A.P., Makarov, A.A., Ivanov, D.V., and Ipatov, A.V., Using mobile long-base radio interferometers to increase the stability of positioning-time support, Izvestiya vuzov.Priborostroenie, 2017, vol. 60, no. 6, pp. 529–537.

    Google Scholar 

  14. Parametry zemli 1990 (PZ-90.11). Spravochnyi dokument (Earth parameters of 1990 (PZ-90.11). Reference document), Moscow: VTU GSh VS RF, 2014.

  15. Makarov, A.A., Myslivtsev, T.O., Zybin, V.V., Kovalev, M.A., and Vinnik, Yu.A., Nazemnyi statsionarnyi priemnyi punkt 3 klassa tochnosti 14B763: metodicheskoye posobiye (Ground-based stationary receiving station of accuracy-grade 3 14B763: A textbook), St. Petersburg, VKA imeni A.F. Mozhaiskogo, 2013.

  16. National Institute of Information and Communications Technology. http://www.nict.go.jp/en/index.html. Accessed May 01, 2017.

  17. Ichikawa Ryuichi et al., Development of the Compact VLBI System for Calibrating GNSS and EDM Devices, Journal of the National Institute of Information and Communications Technology, 2010, vol. 57, no. 3–4.

  18. Atsutoshi Ishii et al., Current Status of the Development of a Transportable and Compact VLBI System by NICT and GSI, IVS 2010 General Meeting Proceedings, pp. 55–59. http://ivscc.gsfc.nasa.gov/publications/gm2010/ishii.pdf. Accessed May 01, 2017.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Aleshkin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aleshkin, A.P., Zybarev, K.K., Ivanov, D.V. et al. A Method for Positioning and Timing Support of Remote Users based on Mobile Radio Interferometry. Gyroscopy Navig. 11, 77–84 (2020). https://doi.org/10.1134/S2075108720010034

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075108720010034

Keywords:

Navigation