Skip to main content
Log in

Fiber-Optic Gyroscope Accuracy Improvement by Suppressing the Parasitic Effects in Integrated Optic Phase Modulators

  • Published:
Gyroscopy and Navigation Aims and scope Submit manuscript

Abstract

The results of study of a fiber-optic gyroscope prototype with 0.01–0.001deg/h drift are presented. The gyroscope comprises three feedback loops: one for Sagnac phase difference compensation, the second one for the scale factor stabilization, and the third (fast-response) one for the compensation of constant component of optical signal on the photodetector, affecting the measurement channel. To increase the accuracy of the prototype gyroscope up to the level of 0.001 deg/h, it is proposed to use the fourth and the fifth feedback loops which will suppress the parasitic effects in the integrated optic phase modulators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.

Similar content being viewed by others

REFERENCES

  1. Lefevre, H.C., Potpourri of comments about the fiber optic gyro for its 40th anniversary, and how fascinating it was and it still is, Proc. SPIE, 2016, vol. 9852, p. 985203-1.

    Article  Google Scholar 

  2. Sanders, G.A., Sanders, S.J., Strandjord, L.K., Qiu, T., Wu, J., Smiciklas, M., Mead, D., Mosor, S., Arrizon, A., Ho, W. and Salit, M., Fiber optic gyro development at Honeywell, Proc. SPIE, 2016, vol. 9852, p. 985207-1.

    Article  Google Scholar 

  3. Untilov, A.A., Egorov, D.A., Rupasov, R.L., Novikov, S.T., Neforosnyi, M.P., Azbeleva, E.V. and Dranitsyna, E.V., Results of fiber-optic gyro testing, Giroskopiya i navigatsiya, 2017, vol. 25, no. 3, p. 78–85.

  4. Vali, V. and Shorthill, R.W., Fiber ring interferometer, Applied Optics, 1976, vol. 15, p. 1099.

    Article  Google Scholar 

  5. Ulrich, R. and Johnson, M., Fiber-ring interferometer: polarization analysis, Optics Letters, 1979, vol. 4, p. 152.

    Article  Google Scholar 

  6. Schiffner, G., Leeb, W.R., Krammer, H. and Wittmann, J., Reciprocity of birefringent single-mode fibers for optical gyros, Applied Optics, 1979, vol. 18, p. 2096.

    Article  Google Scholar 

  7. Ulrich, R., Fiber-optic rotation sensing with low drift, Optics Letters, 1980, vol. 5, no. 5, p. 173.

    Article  Google Scholar 

  8. Burns, W.K., Chen, C. and Moeller, R.P., Fiber-optic gyroscopes with broad-band sources, Journal of Lightwave Technology, 1983, vol. 1, p. 98.

    Article  Google Scholar 

  9. Shupe, D.M., Thermally induced non-reciprocity in the fiber-optic interferometer, Applied Optics, 1980, no. 5, p. 654.

  10. Frigo, N.J., Compensation of linear sources of nonreciprocity in Sagnac interferometers, Proc. SPIE, 1983, vol. 412, p. 268.

    Article  Google Scholar 

  11. Malvern, A., Optical fiber gyroscope sensing coil having a reduced sensitivity to temperature variations occurring therein, US Patent 5 465 150, November, 1995.

  12. Cordova, A., Bilinsky, D.J., Fersht, S.M., Surabian, J.M., Wilde, J.D. and Hinman, P.A., Sensor coil for low bias fiber optic gyroscope, US Patent 5 371 593, 1994.

  13. Cordova, A. and Surabian, G., Potted fiber optic gyro sensor coil for stringent vibration and thermal environments, US Patent 5 546 482, 1996.

  14. Tirat, O.F.J. and Euverte, J.M., Finite element model of thermal transient effect in fiber optic gyro, Proc. SPIE, 1996, vol. 2837, p. 230.

    Article  Google Scholar 

  15. Kurbatov, A.M. and Kurbatov, R.A., Temperature characteristics of fiber-optic gyroscope sensing coils, Radiotekhnika i elektronika, 2013, no. 7, p. 735.

  16. Lefevre, H.C., The Fiber Optic Gyroscope, London: Artech House, 1993.

    Google Scholar 

  17. Pavlath, G.A., Method for reducing random walk in fiber-optic gyroscopes, US Patent 5 530 545, 1996.

  18. Killian, K.M., Burmenko, M. and Hollinger, W., High-performance fiber optic gyroscope with noise reduction, Proc. SPIE, 1994, vol. 2292, p. 255.

    Article  Google Scholar 

  19. Straindjord, L.K. and Sanders, G.A., Relative intensity noise controller for fiber light sources, US Patent US2003/0128365 A1, July, 2003.

  20. LuValle, M.J., Friebele, E.J., Dimarcello, F.V., Miller, G.A., Monberg, E.M., Wasserman, L.R., Wisk, P.W., Yan, M.F. and Birtch, E.M., Radiation-induced loss predictions for pure silica core polarization-maintaining fibers, Proc. SPIE, 2006, vol. 6193, p. 61930J-1.

  21. Kurbatov, A.M. and Kurbatov, R.A., Radiation resistant fibers with depressed claddings for fiber optic gyro sensing coil, Proc. SPIE, OFS-22, 2012, vol. 8421, p. 842180-1.

  22. Kurbatov, A.M., Kurbatov, R.A., Voloshin, V.V., Vorob’ev, I.L. and Kolosovsky, A.O., Polarisation maintaining fibre with pure silica core and two depressed claddings for fibre optic gyroscope, Optical Fiber Technology, 2016, vol. 32, p. 6.

    Article  Google Scholar 

  23. Egorov, D.A., Rupasov, A.V. and Untilov, A.A., Ensuring radiation resistance of fiber optic gyroscopes and ways to improve it, Gyroscopy and Navigation, 2018, vol. 9, no. 4, pp. 314–324.

    Article  Google Scholar 

  24. Yang, Y., Suo, X. and Yang., M., Active radiation hardening technology for fiber-optic source, Proc. SPIE, 2013, vol. 8924, p. 89240W-1.

    Article  Google Scholar 

  25. Zotov, K.V., Likhachev, M.E., Tomashuk, A.L., Bubnov, M.M., Yashkov, M.V. and Gur’yanov, A.N., Radiation-resistant erbium-doped silica fibre, Quantum Electronics, 2007, vol. 37, no. 10, p. 946.

    Article  Google Scholar 

  26. Kel’ O.L., Mel’kumov, M.A., Azanova, I.S., Gur’yanov, A.N., Ryumkin, K.E., Yashkov, M.N., Nosova, E.A., Sharonova, Yu.O., Koffer, K.V. and Ponosova, A.A., Supeluminescent erbium-doped fiber source of IR-radiation, resistant to ionizing radiation, Proc. Russian National Conference on Fiber Optics (VKVO), Fiber Lasers and Amplifiers, 2017, p. 45

  27. Lin, S.C. and Giallorenzi, T.G., Sensitivity analysis of the Sagnac-effect optical-fiber ring interferometer, Applied Optics, 1979, no. 6, p. 915.

  28. Kurbatov, A.M., New methods to improve the performance of open and closed loop fiber-optic gyros, Gyroscopy and Navigation, 2015, vol. 6, no. 3, pp. 207–217.

    Article  Google Scholar 

  29. Ebberg, A. and Schiffner, G., Closed-loop fiber-optic gyroscope with a sawtooth phase-modulated feedback, Optics Letters, 1985, no. 6, p. 300.

  30. Lefevre, H.C., Graindorge, Ph., Arditty, H.J. et al., Double closed-loop hybrid fiber gyroscope using digital phase ramp, Proc. Optical Fiber Sensors (OFS) San Diego CA, 1985, p. PDS7-1.

    Google Scholar 

  31. Pavlath, G.A., Closed-loop fiber optic gyros, Proc. SPIE, 1996, vol. 2837, p. 46.

    Article  Google Scholar 

  32. Spahlinger, G., Fiber optic Sagnac interferometer with digital phase ramp resetting via correlation-free demodulator control, US Patent 5 123 741, 1992.

  33. Chung, J.-C., Interferometric fiber optic gyroscope dead band suppression, Applied Physics Express, 2008, no. 7, p. 072501-1.

  34. Kurbatov, A.M. and Kurbatov, R.A., Methods of improving the accuracy of fiber-optic gyros, Gyroscopy and Navigation, 2012, vol. 3, no. 2, pp. 132–143.

    Article  Google Scholar 

  35. Kurbatov, A.M. and Kurbatov, R.A., Polarization and modal filters based on W-fibers Panda for fiber-optic gyroscopes and high-power fiber lasers, Optical Engineering, 2013, no. 3, p. 035006-1.

  36. Kurbatov, A.M. and Kurbatov, R.A., New optical W-fiber Panda for fiber optic gyroscope sensitive coil, Technical Physics Letters, 2010, vol. 36, no. 9, pp. 789–791.

    Article  Google Scholar 

  37. Kurbatov, A.M. and Kurbatov, R.A., Polarisation non-reciprocity cancelling in Sagnac fibre-ring interferometer: an attempt of realistic study, Optical and Quantum Electronics, 2019, vol. 51, no. 5, pp. 1–20.

    Article  Google Scholar 

  38. Kurbatov, A.M. and Kurbatov, R.A., Fiber optic gyroscope with a large dynamic range of measurement of angular speeds, RF Patent 2620933, 2016.

  39. Kurbatov, A.M. and Kurbatov, R.A., Method for improving accuracy of fiber-optic gyroscopes under vibration influence, RF Patent RU 2 627 020, 2016.

  40. Hollinger, W.P. and Covacs, R.A., Tuned integrated optic modulator on a fiber optic gyroscope, US Patent 5 504 580, 1996.

  41. Greening, T.C., Khari, S.H. and Newlin, M.P., Minimal bias switching for fiber optic gyroscope, US Patent 7 336 364, 2008.

  42. Yi, X. and Wen, X., Y-integrated optic chip (Y-IOC) applied in fiber optic gyro, Proc. SPIE, 2006, vol. 6344, p. 63440U-1.

    Article  Google Scholar 

  43. Kurbatov, A.M. and Kurbatov, R.A., The vibration error of the fiber-optic gyroscope rotation rate and methods of its suppression, Radiotekhnika i elektronika, 2013, no. 8, p. 842.

  44. Kolevatov, A.P., Nikolaev, S.G., Andreev, A.G., Ermakov, V.S., Struk, V.K., Parfenov, A.S. and Nesterov I.I., Advances in development of strapdown inertial navigation systems on fiber-optic gyroscopes, Proc. 16th St. Petersburg International Conference on Integrated Navigation Systems, St. Petersburg: Concern CSRI Elektropribor, 2009.

Download references

ACKNOWLEDGMENTS

The authors express their gratitude to the personnel of the Academician Kuznetsov Research Institute of Applied Mechanics: N.N. Chanov, O.K. Borisov, A.V. Sobchakov, E.A. Golyakov, I.B. Kolosunin, D.A. Tabargin and P.I. Ganyaev for their contribution in the assembly of the FOG prototype and the breadboard for the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Kurbatov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurbatov, A.M., Kurbatov, R.A. & Goryachkin, A.M. Fiber-Optic Gyroscope Accuracy Improvement by Suppressing the Parasitic Effects in Integrated Optic Phase Modulators. Gyroscopy Navig. 10, 256–267 (2019). https://doi.org/10.1134/S2075108719040114

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075108719040114

Keywords:

Navigation