Skip to main content
Log in

Circumlunar Spacecraft Navigation Using the Measurements from Global Navigation Satellite Systems GLONASS, GPS, Galileo and BeiDou

  • Published:
Gyroscopy and Navigation Aims and scope Submit manuscript

Abstract

The study makes an approach to the problem of circumlunar spacecraft navigation using the measurements from the global navigation satellite systems (GNSS) GLONASS, GPS, Galileo and BeiDou. Algorithms have been developed for determining the orbits of low- and high-orbit circumlunar spacecraft, based on the method of dynamic filtering of pseudo-range measurements from “reverse” navigation satellites (NS). The solution to the navigation problem has been simulated by the measurements from four GNSS, and by those from the NS of GLONASS and GPS only. Accuracy and dynamic characteristics of the obtained solutions have been determined and compared to similar solutions for geostationary spacecraft.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Mikrin, E.A. and Mikhailov, M.V., Navigatsiya kosmicheskikh apparatov po izmereniyam ot global’nykh sputnikovykh navigatsionnykh sistem (Spacecraft Navigation Using Measurements from Global Navigation Satellite Systems), Moscow: MGTU im. N.E. Baumana, 2017.

  2. Mikrin, E.A. and Mikhailov, M.V., Orientatsiya, vyvedenie, sblizhenie i spusk kosmicheskikh apparatov po izmereniyam ot global’nykh sputnikovykh navigatsionnykh sistem (Orientation, Ascent, Rendezvous and Descent of Spacecraft Based on Measurements from Global Navigation Satellite Systems), Moscow: MGTU im. N.E. Baumana, 2017.

  3. Mikhailov, N.V., Avtonomnaya navigatsiya kosmicheskikh apparatov pri pomoshchi sputnikovykh radionavigatsionnykh sistem (Autonomous Navigation of Spacecraft Using Satellite Radio Navigation Systems), St. Petersburg: Politekhnika, 2014.

  4. Gordienko, E.S., Ivashkin, V.V. and Simonov, A.V., Analyzing stability of orbits of artificial satellites of the Moon and choosing the configuration of the lunar navigation satellite system, Solar System Research, 2017, vol. 51, no. 7, p. 654. https://doi.org/10.1134/S0038094617070061

    Article  Google Scholar 

  5. Chebotarev, V.E., Kudymov, V.I., Zvonar’, V.D., Vnukov, A.A. and Vladimirov, A.V., The concept of circumlunar navigation, Issledovaniya naukograda, 2014, vol. 10, no. 4, pp. 14–20.

  6. Mikrin, E.A., Orlovskii, I.V., Mikhailov, M.V., Rozhkov, S.N. and Krasnopol’skii, I.A., Satellite navigation of spacecraft in lunar orbit, Kosmicheskaya tekhnika i tekhnologii, 2018, vol. 21, no. 2, pp. 63–70.

  7. Winkler, S., Ramsey, G., Frey, C., Chapel, J., Chu, D., Freesland, D., Krimchansky, A. and Concha, M., GPS receiver on-orbit performance for the GOES-R spacecraft, Proc. 10th International ESA Conference on Guidance, Navigation & Control Systems, Salzburg, Austria, 2017.

  8. Nazarov, A.E. and Evgrafov, A.E., Using an autonomous navigation system on geostationary spacecraft Electro-L, Multifunctional Space Navigator Platform. On the occasion of the 80th anniversary of Lavochkin Research and Production Association and the 60th anniversary of the space era, Khimki, Moscow, 2017, pp. 313–331.

    Google Scholar 

  9. Marareskul, D.I., The method of increase of availability of high orbit spacecraft navigation support by GLONASS, Bulletin of Academician M.F.Reshetnev Siberian Aerospace University, 2013, vol. 52, no. 6, pp. 82–88.

    Google Scholar 

  10. Bartenev, V.A., Grechkoseev, A.K. and Marareskul, D.I., GLONASS and GPS application for navigation of geostationary and high-elliptical spacecraft: Navigation methods, equipment configuration and test techniques, Kosmonavtika i raketostroenie, 2007, vol. 48, no. 3, pp. 23–30.

  11. Caporali, A. and Nicolini, L., Comparison between broadcast and precise orbits: GPS, GLONASS, Galileo and BeiDou, EUREF Analysis Centres Workshop, Brussels, Belgium, 2017.

  12. Circi, Ch., Romagnoli, D. and Fumenti, F., Halo orbit dynamics and properties for a lunar global positioning system design, Monthly Notices of the Royal Astronomical Society, 2014, vol. 442, pp. 3511–3527. https://doi.org/10.1093/mnras/stu1085

    Article  Google Scholar 

  13. Mikrin, E.A., Mikhailov, M.V., Orlovskii, I.V., Rozhkov, S.N. and Krasnopol’skii, I.A., Satellite navigation of lunar orbiting spacecraft and objects on the lunar surface, Gyroscopy and Navigation, 2019, vol. 10, no. 2, pp. 54–61.

    Article  Google Scholar 

  14. Yang, Y., Gao, W., Guo, S., Mao, Y., Yang, Y., Introduction to BeiDou-3 navigation satellite system, Navigation, 2019, vol. 66, pp. 7–18.

    Article  Google Scholar 

  15. Jing, S., Zhan, X., Lu, J., Feng, S., Ochieng, W., Characterisation of GNSS space service volume, Journal of Navigation, 2015, vol. 68, no. 1, pp. 107–125.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Mikhailov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikrin, E.A., Mikhailov, M.V., Orlovskii, I.V. et al. Circumlunar Spacecraft Navigation Using the Measurements from Global Navigation Satellite Systems GLONASS, GPS, Galileo and BeiDou. Gyroscopy Navig. 10, 187–195 (2019). https://doi.org/10.1134/S2075108719040126

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075108719040126

Keywords:

Navigation