Skip to main content
Log in

A note on Schwartz functions and modular forms

  • Published:
Archiv der Mathematik Aims and scope Submit manuscript

Abstract

We generalize the recent work of Viazovska by constructing infinite families of Schwartz functions, suitable for Cohn–Elkies style linear programming bounds, using quasi-modular and modular forms. In particular, for dimensions \(d \equiv 0 \pmod {8}\), we give new constructions for obtaining sphere packing upper bounds via modular forms. In dimension 8 and 24, these exactly match the functions constructed by Viazovska and Cohn, Kumar, Miller, Radchenko, and Viazovska which resolved the sphere packing problem in those dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bringmann, K., Folsom, A., Ono, K., Rolen, L.: Harmonic Maass Forms and Mock Modular Forms: Theory and Applications. American Mathematical Society, Providence (2017)

    Book  Google Scholar 

  2. Cohn, H., Elkies, N.: New upper bounds on sphere packings I. Ann. Math. 157, 689–714 (2003)

    Article  MathSciNet  Google Scholar 

  3. Cohn, H., Gonçalves, F.: An optimal uncertainty principle in twelve dimensions via modular forms. Invent. Math. 217(3), 799–831 (2019)

    Article  MathSciNet  Google Scholar 

  4. Cohn, H., Kumar, A.: Universally optimal distribution of points on spheres. J. Am. Math. Soc. 20, 99–148 (2007)

    Article  MathSciNet  Google Scholar 

  5. Cohn, H., Kumar, A., Miller, S., Radchenko, D., Viazovska, M.: The sphere packing problem in dimension 24. Ann. Math. 185, 1017–1033 (2017)

    Article  MathSciNet  Google Scholar 

  6. Cohn, H., Kumar, A., Miller, S., Radchenko, D., Viazovska, M.: Universal optimality of the \(E_{8}\) and Leech lattices and interpolation formulas. arXiv:1902.05438

  7. Conway, J., Sloane, N.J.A.: Sphere Packings, Lattices, and Groups. Springer, New York (1999)

    Book  Google Scholar 

  8. Hales, T.: A proof of the Kepler conjecture. Ann. Math. 162, 1065–1185 (2005)

    Article  MathSciNet  Google Scholar 

  9. Kabatiansky, G.A., Levenshtein, V.I.: Bounds for packings on a sphere and in space. Problemy Peredac̆i Informacii 14, 3–25 (1978). English translation in Problems of Information Transmission 14, 1–17 (1978)

  10. Nebe, G.: An even unimodular 72-dimensional lattice of minimum 8. J. Reine Angew. Math. 673, 237–247 (2012)

    MathSciNet  MATH  Google Scholar 

  11. Thue, A.: Über die dichteste Zusammenstellung von kongruenten Kreisen in einer Ebene. Norske Vid. Selsk. Skr. No. 1, pp. 1–9 (1910)

  12. Venkatesh, A.: A note on sphere packings in high dimension. Int. Math. Res. Not. 2013, 1624–1648 (2013)

    Article  Google Scholar 

  13. Viazovska, M.: The sphere packing problem in dimension 8. Ann. Math. 185, 991–1015 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Ken Ono for his thoughts on an earlier version of this work and Henry Cohn for his many helpful comments which improved this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian Wagner.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rolen, L., Wagner, I. A note on Schwartz functions and modular forms. Arch. Math. 115, 35–51 (2020). https://doi.org/10.1007/s00013-020-01459-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00013-020-01459-y

Keywords

Mathematics Subject Classification

Navigation