Skip to main content
Log in

Molecular Dynamic Calculation of Macroparameters of Technical Gases by the Example of Argon, Nitrogen, Hydrogen, and Methane

  • Published:
Mathematical Models and Computer Simulations Aims and scope

Abstract

This work is devoted to the molecular dynamic calculations of the properties of technical gases, whose study is a traditional problem of physics of matter. At present, there is increased interest in this problem due to the development of nanotechnologies and their introduction in various industries. The gases’ properties required for simulation are expressed as a set of macroparameters, including kinetic coefficients; parameters of the equation of state; and values of kinetic, potential, total, and internal energies. The study was performed for technical gases such as argon, hydrogen, nitrogen, and methane at a pressure of 1 atm and in the temperature range from 100 to 400 K. The obtained calculated data on the macroparameters of gases is in good agreement with the known theoretical estimates and experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1964).

    MATH  Google Scholar 

  2. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Oxford Univ. Press, New York, 1987).

    MATH  Google Scholar 

  3. A. N. Lagar’kov and V. M. Sergeev, “Molecular dynamics method in statistical physics,” Sov. Phys. Usp. 21, 566–588 (1978).

    Article  Google Scholar 

  4. J. M. Haile, Molecular Dynamics Simulations. Elementary Methods (Wiley, New York, 1992).

    Google Scholar 

  5. D. Frenkel and B. Smit, Understanding Molecular Simulation. From Algorithm to Applications (Academic, New York, 2002).

    MATH  Google Scholar 

  6. D. C. Rapaport, The Art of Molecular Dynamics Simulations, 2nd ed. (Cambridge Univ. Press, Cambridge, 2004).

    Book  Google Scholar 

  7. G. E. Norman and V. V. Stegailov, “Stochastic theory of the classical molecular dynamics method,” Math. Models Comput. Simul. 5, 305–333 (2013).

    Article  MathSciNet  Google Scholar 

  8. L. Verlet, “Computer 'experiments' on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules,” Phys. Rev. 159, 98–103 (1967).

    Article  Google Scholar 

  9. J. E. Lennard-Jones, “Cohesion,” Proc. Phys. Soc. 43, 461–482 (1931).

    Article  Google Scholar 

  10. G. von Mie, “Zur kinetischen Theorie der einatomigen Korper,” Ann. Phys. (Leipzig) 11, 657–697 (1903).

    MATH  Google Scholar 

  11. L. R. Fokin and A. N. Kalashnikov, “The transport properties of an N2-H2 mixture of rarefied gases in the EPIDIF database,” High Temp. 47, 643–655 (2009).

    Article  Google Scholar 

  12. L. R. Fokin, A. N. Kalashnikov, and A. F. Zolotukhina, “Transport properties of mixtures of rarefied gases. Hydrogen-methane system,” J. Eng. Phys. Thermophys. 84, 1408–1420 (2011).

    Article  Google Scholar 

  13. L. R. Fokin and A. N. Kalashnikov, “Transport properties of a rarefied CH4-N2 gas mixture,” J. Eng. Phys. Thermophys. 89, 249–259 (2016).

    Article  Google Scholar 

  14. K. Meier, A. Laesecke, and S. Kabelac, “Transport coefficients of the Lennard-Jones model fluid. III. Bulk viscosity,” J. Chem. Phys. 122 014513 (2005).

    Article  Google Scholar 

  15. K. Meier, “Computer simulation and interpretation of the transport coefficients of the Lennard-Jones model fluid,” PhD Thesis (Shaker, Aachen, 2002).

  16. D. Levesque, L. Verlet, and J. Kurkijarvi, “Computer 'experiments' on classical fluids. IV. Transport properties and time-correlation functions of the Lennard-Jones liquid near its triple point,” Phys. Rev. A 7, 1690–1700 (1973).

    Article  Google Scholar 

  17. V. O. Podryga, “Determination of real gas macroparameters by molecular dynamics,” Mat. Model. 27 (7), 80–90 (2015).

    MathSciNet  MATH  Google Scholar 

  18. H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, et al., “Molecular dynamics with coupling to an external bath,” J. Chem. Phys. 81, 3684–3690 (1984).

    Article  Google Scholar 

  19. E. W. Lemmon, M. O. McLinden, and D. G. Friend, “Thermophysical properties of fluid systems,” in NIST Chemistry WebBook, NIST Standard Reference Database Number 69, Ed. by P. J. Linstrom and W. G. Mallard (Natl. Inst. Standards Technol., Gaithersburg MD, 1997). http://webbook.nist.gov.

    Google Scholar 

  20. Tables of Physical Quantities, The Hanbook, Ed. by I. K. Kikoin (Atomizdat, Moscow, 1976) [in Russian].

    Google Scholar 

  21. E. B. Winn, “The temperature dependence of the self-diffusion coefficients of argon, neon, nitrogen, oxygen, carbon dioxide, and methane,” Phys. Rev. 80, 1024–1027 (1950).

    Article  Google Scholar 

  22. F. Hutchinson, “Self-diffusion in argon,” J. Chem. Phys. 17, 1081–1086 (1949).

    Article  Google Scholar 

  23. V. G. Fastovskii, A. E. Rovinskii, and U. V. Petrovskii, Inert Gases (Atomizdat, Moscow, 1972) [in Russian].

    Google Scholar 

  24. N. B. Vargaftik, Handbook of Thermophysical Properties of Gases and Liquids, 2nd ed. (Nauka, Moscow, 1972) [in Russian].

    Google Scholar 

  25. V. V. Sychev, A. A. Vasserman, A. D. Kozlov, G. A. Spiridonov, and V. A. Tsymarnyi, Thermodynamic Properties of Nitrogen, State Standard Reference Data Service (Izdat. Standartov, Moscow, 1977) [in Russian].

    Google Scholar 

  26. GSSSD (State Standard Reference Data Service) No. 4-78: Liquid and gaseous nitrogen. Density, enthalpy, entropy and isobaric heat capacity at temperatures of 70–1500 K and pressures of 0.1–100 MPa (1978).

  27. A. A. Vigasin, V. E. Liusternik, and L. R. Fokin, GSSSD (State Standard Reference Data Service) No. 49-83: Nitrogen. The second virial coefficient, the coefficients of dynamic viscosity, thermal conductivity, self-diffusion and the Prandtl number of a rarefied gas in the temperature range of 65–2500 K, Standard Reference Tables (Izdat. Standartov, Moscow, 1984).

    Google Scholar 

  28. A. D. Kozlov, V. M. Kuznetsov, et al., GSSSD (State Standard Reference Data Service) No. 89-85. Nitrogen. The coefficients of dynamic viscosity and thermal conductivity at temperatures of 65–1000 K and pressures from the state of a rarefied gas to 200 MPa. Standard Reference Tables (Izdat. Standartov, Moscow, 1986).

    Google Scholar 

  29. V. M. Zhdanov and M. A. Alievskii, Molecular Gas Transport and Relaxation Processes (Nauka, Moscow, 1989) [in Russian].

    Google Scholar 

  30. A. P. Babichev, N. A. Babushkina, A. M. Bratkovskii, et al., Physical Quantities, The Handbook, Ed. by I. S. Grigor’ev and E. Z. Meilihov (Energoatomizdat, Moscow, 1991) [in Russian].

    Google Scholar 

  31. M. S. Cramer, “Numerical estimates for the bulk viscosity of ideal gases,” Phys. Fluids 24, 066102 (2012).

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 17-71-10 045).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. O. Podryga.

Additional information

Translated by L. Kartvelishvili

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Podryga, V.O., Vikhrov, E.V. & Polyakov, S.V. Molecular Dynamic Calculation of Macroparameters of Technical Gases by the Example of Argon, Nitrogen, Hydrogen, and Methane. Math Models Comput Simul 12, 210–220 (2020). https://doi.org/10.1134/S2070048220020118

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070048220020118

Keywords:

Navigation