Skip to main content
Log in

Retrieval of Reflection Coefficients of the Earth’s Surface from MODIS Satellite Measurements Considering Radiation Polarization

  • REMOTE SENSING OF ATMOSPHERE, HYDROSPHERE, AND UNDERLYING SURFACE
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

An algorithm is considered for retrieving the reflection coefficients of the Earth’s surface taking into account radiation polarization. The algorithm was tested for five MODIS channels in three areas: south of Tomsk region, Moscow region, and Irkutsk region. Test points at the center of coniferous forest massifs in the summer season were used to estimate the error of the algorithm. Results from our algorithm with and without accounting for polarization, from the MOD09 algorithm, and results without atmospheric correction were compared with measurements taken as reference. The comparison shows that the average values obtained by our algorithm taking into account polarization are closer to the reference data than those obtained using the MOD09 NASA algorithm in MODIS channels 1 (0.620–0.670 μm), 3 (0.459–0.479 μm), and 4 (0.545–0.565 μm), and the difference on the same order of magnitude is observed in MODIS channel 2 (0.841–0.876 μm). In MODIS channel 8 (0.405–0.420 μm), one algorithm is preferable in some situations and the other otherwise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. J. Otterman and R. S. Fraser, “Adjacency effects on imaging by surface reflection and atmospheric scattering: Cross radiance to zenith,” Appl. Opt. 18 (16), 2852–2860 (1979).

    Article  ADS  Google Scholar 

  2. E. F. Vermote and A. Vermeulen, Atmospheric correction algorithm: Spectral reflectances (MOD09). Algorithm Theoretical Background document, version 4.0. 1999. http://modis.gsfc.nasa.gov/atbd/atbd_nod08.pdf. Cited March 9, 2019.

  3. M. Putsay, “A simple atmospheric correction method for the short wave satellite images,” Int. J. Remote Sens. 13 (8), 1549–1558 (1992).

    Article  ADS  Google Scholar 

  4. P. N. Reinersman and K. L. Carder, “Monte Carlo simulation of the atmospheric point-spread function with an application to correction for the adjacency effect,” Appl. Opt. 34 (21), 4453–4471 (1995).

    Article  ADS  Google Scholar 

  5. F. M. Breon and E. Vermote, “Correction of MODIS surface reflectance time series for BRDF effects,” Remote Sens. Environ. 125, 1–9 (2012).

    Article  ADS  Google Scholar 

  6. A. Lyapustin, J. Martonchik, Y. Wang, I. Laszlo, and S. Korkin, “Multiangle Implementation of Atmospheric Correction (MAIAC): 3. Atmospheric correction,” Remote Sens. Environ. 127, 385–393 (2012).

    Article  ADS  Google Scholar 

  7. E. F. Vermote, N. El. Saleous, C. O. Justice, Y. J. Kaufman, J. L. Privette, L. Remer, J. C. Roger, and D. Tanre, “Atmospheric correction of visible to middle-infrared EOS-MODIS data over land surfaces: Background, operational algorithm and validation,” J. Geophys. Res. D 102 (14), 17,131 (1997).

    Article  ADS  Google Scholar 

  8. D. Tanre, B. N. Holben, and Y. J. Kaufman, “Atmospheric correction algorithm for NOAA-AVHRR products: Theory and application,” IEEE Trans. Geosci. Remote Sens. 30 (2), 231–248 (1992).

    Article  ADS  Google Scholar 

  9. D. J. Diner and J. V. Martonchik, “Atmospheric transfer of radiation above an inhomogeneous non-Lambertian reflective ground. 1. Theory,” J. Quant. Spectrosc. Radiat. Transfer 31 (2), 97–125 (1984).

    Article  ADS  Google Scholar 

  10. T. Y. Lee and Y. J. Kaufman, “Non-Lambertian effects on remote-sensing of surface reflectance and vegetation index,” IEEE Trans. Geosci. Remote Sens. 24 (5), 699–708 (1986).

    Article  ADS  Google Scholar 

  11. M. Leroy, J. Deuze, F. Breon, O. Hautecoeur, M. Herman, J. Buriez, D. Tanre, S. Bouffies, P. Chazette, and J. Roujean, “Retrieval of atmospheric properties and surface bidirectional reflectances over land from POLDER/ADEOS,” J. Geophys. Res. 102, 17023–17037 (1997).

    Article  ADS  Google Scholar 

  12. J.-L. Roujean, D. Tanre, F.-M. Breon, and J.-L. Deuze, “Retrieval of land surface parameters from airborne POLDER bidirectional reflectance distribution function during HAPEX-Sahel,” J. Geophys. Res. D 102 (10), 11201–11218 (1997).

    Article  ADS  Google Scholar 

  13. D. J. Diner, J. V. Martonchik, C. Borel, S. A. W. Gerstl, H. R. Gordon, Y. Knyazikhin, R. Myneni, B. Pinty, and M. Verstraete, Multi-Angle Imaging Spectro-Radiometer Level 2 Surface Retrieval Algorithm Theoretical Basis (Jet Propulsion Laboratory: La Canada Flintridge, CA, USA, 2008).

  14. L. V. Katkovskii, ”Parameterization of outgoing radiation for quick atmospheric correction of hyperspectral images,” Opt. Atmos. Okeana 29 (9), 778–784 (2016).

    Google Scholar 

  15. S. A. Lisenko, “Atmospheric correction of multispectral satellite images based on the solar radiation transfer approximation model,” Atmos. Ocean. Opt. 31 (1), 72–85 (2018).

    Article  Google Scholar 

  16. D. Tanre, B. N. Holben, and Y. J. Kaufman, “Atmospheric correction algorithm for NOAA-AVHRR products: Theory and application,” IEEE Trans. Geosci. Remote Sens. 30 (2), 231–248 (1992).

    Article  ADS  Google Scholar 

  17. M. V. Tarasenkov and V. V. Belov, “Software package for reconstructing reflective properties of the Earth’s surface in the visible and UV ranges,” Atmos. Ocean. Opt. 28 (1), 89–94 (2015).

    Article  Google Scholar 

  18. M. V. Tarasenkov, V. V. Belov, and M. V. Engel, “Algorithm for reconstruction of the Earth surface reflectance from modis satellite measurements in a turbid atmosphere,” Proc. SPIE—Int. Soc. Opt. Eng. 10833, CID: 10833 16 [10833-58] (2018).

  19. Gaofei Yin, Ainong Li, Shengbiao Wu, Weiliang Fan, Yelu Zeng, Kai Yan, Baodong Xu, Jing Li, and Qinhuo Liu, “PLC: A simple and semi-physical topographic correction method for vegetation canopies based on path length correction,” Remote Sens. Environ. 215, 184–198 (2018).

    Article  ADS  Google Scholar 

  20. V. A. Egorov and S. A. Bartalev, “Radiometric correction for topography-induced distortions in land cover reflectance derived from satellite data,” Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli Kosmosa 13 (5), 192–201 (2016).

    Article  Google Scholar 

  21. M. V. Tarasenkov, I. V. Kirnos, and V. V. Belov, “Observation of the Earth’s surface from the space through a gap in a cloud field,” Atmos. Ocean. Opt. 30 (1), 39–43 (2017).

    Article  Google Scholar 

  22. T.A. Germogenova, “About the effect of polarization on the scattering radiation intensity distribution,” Izv. Akad. Nauk SSSR. Ser. Geofiz. No. 6, 854–856 (1962).

    Google Scholar 

  23. T. A. Sushkevich, Mathematical Models for Radiation Transfer (BINON. Laboratoriya znanii, Moscow, 2005) [in Russian].

  24. M. A. Nazaraliev, Statistical Simulation of Radiative Processes in the Atmosphere (Nauka, Moscow, 1990) [in Russian].

    MATH  Google Scholar 

  25. A. V. Zimovaya, M. V. Tarasenkov, and V. V. Belov, “Radiation polarization effect on the retrieval of the Earth’s surface reflection coefficient from satellite data in the visible wavelength range,” Atmos. Ocean. Opt. 31 (2), 131–136 (2018).

    Article  Google Scholar 

  26. A. V. Zimovaya, M. V. Tarasenkov, and V. V. Belov, “Effect of radiation polarization on reconstruction of the Earth’s surface reflection coefficient from satellite data in the visible wavelength range,” Proc. SPIE—Int. Soc. Opt. Eng. 10466, CID: 10466 10 [10466-54] (2017).

  27. Aerosol Robotic Network (AERONET). http://aeronet.gsfc.nasa.gov. Cited March 9, 2019.

  28. C. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998).

    Book  Google Scholar 

  29. F. X. Kneizys, E. P. Shettle, G. P. Anderson, L. W. Abreu, J. H. Chetwynd, J. E. A. Selby, S. A. Clough, and W. O. Gallery, User guide to LOWTRAN-7. ARGL-TR-86-0177. ERP 2010 (Hansom AFB, MA, 2010).

    Google Scholar 

  30. URL: https://lpdaac.usgs.gov/data_access. Cited March 9, 2019.

  31. A. Bucholtz, “Rayleigh-scattering calculations for the terrestrial atmosphere,” Appl. Opt. 34 (15), 2765–2773 (1995).

    Article  ADS  Google Scholar 

  32. G. I. Marchuk, G. A. Mihajlov, M. A. Nazaraliev, R. A. Darbinyan, B. A. Kargin, and B. S. Elepov, Monte Carlo Method in Atmospheric Optics (Nauka, Novosibirsk, 1976) [in Russian].

    Google Scholar 

  33. V. V. Belov, M. V. Tarasenkov, and K. P. Piskunov, “Parametrical model of solar haze intensity in the visible and UV ranges of the spectrum,” Opt. Atmos. Okeana 23 (4), 294–297 (2010).

    Google Scholar 

  34. E. L. Krinov, Spectral Reflectivity of Natural Formations (Publishing House of AS USSR, Leningrad, 1947) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. V. Tarasenkov or V. V. Belov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Bazhenov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarasenkov, M.V., Zimovaya, A.V., Belov, V.V. et al. Retrieval of Reflection Coefficients of the Earth’s Surface from MODIS Satellite Measurements Considering Radiation Polarization. Atmos Ocean Opt 33, 179–187 (2020). https://doi.org/10.1134/S1024856020020128

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856020020128

Keywords:

Navigation