Skip to main content
Log in

Development and Use of Acoustic Tools for Diagnostics of the Atmospheric Boundary Layer

  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

Main fields of research and results of investigations of the atmospheric boundary layer with the methods and technical facilities of acoustic diagnostics carried out at the V.E. Zuev Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences, in the past decade are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. N. P. Krasnenko, “Development of investigations on atmospheric acoustics at the IAO SB RAS,” Atmos. Ocean. Opt. 10 (4-5), 337–342 (1997).

    Google Scholar 

  2. S. L. Odintsov, “Sound studies the atmosphere,” Nauka Proizvodstvu, No. 8, 55–59 (2003).

    Google Scholar 

  3. S. L. Odintsov, ”The study of the atmospheric boundary layers by methods of local and remote acoustic diagnostics at the IAO SB RAS.,” Opt. Atmos. Okeana 22 (10), 981–987 (2009).

    Google Scholar 

  4. A. P. Kamardin, V. A. Gladkikh, S. L. Odintsov, and V. A. Fedorov, “Meteorological acoustic Doppler radar (sodar) VOLNA-4M-ST,” Pribory, No. 4, 37–44 (2017).

    Google Scholar 

  5. A. P. Kamardin and S. L. Odintsov, “Method for automatic absolute calibration of sodar measurement channels,” Proc. SPIE—Int. Soc. Opt. Eng. 96805U (2015). https://doi.org/10.1117/12.2205328

  6. A. P. Kamardin, S. L. Odintsov, V. A. Fedorov, and V. A. Gladkikh, RF Patent no. 173822, Byull. Izobret., No. 26 (2016).

  7. V. A. Gladkikh, A. E. Makienko, E. A. Miller, and S. L. Odintsov, “Study of parameters of the atmospheric boundary layer under urban conditions by means of local and remote diagnostics. Part 1. Interlevel wind speed correlations,” Atmos. Ocean. Opt. 24 (3), 271–279 (2011).

    Article  Google Scholar 

  8. V. A. Gladkikh, A. E. Makienko, E. A. Miller, and S. L. Odintsov, “Study of the atmospheric boundary layer parameters under urban conditions with local and remote diagnostics facilities. Part 2. Air temperature and heat flux,” Atmos. Ocean. Opt. 24 (3), 280–287 (2011).

    Article  Google Scholar 

  9. A. P. Kamardin, S. L. Odintsov, and A. V. Skorokhodov, “Identification of internal gravity waves in the atmospheric boundary layer from sodar data,” Opt. A-tmos. Okeana 27 (9), 812–818 (2014).

    Google Scholar 

  10. A. P. Kamardin and S. L. Odintsov, “Height profiles of the structure characteristic of air temperature in the atmospheric boundary layer from sodar measurements,” Atmos. Oceanic Opt. 30 (1), 33–38 (2017).

    Article  Google Scholar 

  11. V. A. Gladkikh, A. P. Kamardin, I. V. Nevzorova, and S. L. Odintsov, “About a possibility of using sodars for measuring vertical turbulent heat fluxes in the atmospheric boundary layer,” in Proc. XXIII International Symposium “Atmospheric and Ocean Optics. Atmospheric Physics” (Publishing House of IAO SB RAS, Tomsk, 2017), p. D461–D464 [in Russian].

  12. A. P. Kamardin, A. P. Kokhanenko, I. V. Nevzorova, and I. E. Penner, “Joint lidar and sodar investigations of the atmospheric boundary layers,” Opt. Atmos. Okeana 24 (6), 543–537 (2011).

    Article  Google Scholar 

  13. G. G. Matvienko, B. D. Belan, M. V. Panchenko, S. M. Sakerin, D. M. Kabanov, S. A. Turchinovich, Y. S. Turchinovich, T. A. Eremina, V. S. Kozlov, S. A. Terpugova, V. V. Pol’kin, E. P. Yausheva, D. G. Chernov, S. L. Odintsov, V. D. Burlakov, M. Yu. Arshinov, G. A. Ivlev, D. E. Savkin, A. V. Fofonov, V. A. Gladkikh, A. P. Kamardin, D. B. Belan, M. V. Grishaev, V. V. Belov, S. V. Afonin, Yu. S. Balin, G. P. Kokhanenko, I. E. Penner, S. V. Samoilova, P. N. Antokhin, V. G. Arshinova, D. K. Davydov, A. V. Kozlov, D. A. Pestunov, T. M. Rasskazchikova, D. V. Simonenkov, T. K. Sklyadneva, G. N. Tolmachev, S. B. Belan, V. P. Shmargunov, B. A. Voronin, V. I. Serdyukov, E. R. Polovtseva, S. S. Vasil’chenko, O. V. Tikhomirova, Yu. N. Ponomarev, O. A. Romanovskii, L. N. Sinitsa, V. N. Marichev, M. V. Makarova, A. S. Safatov, A. S. Kozlov, S. B. Malyshkin, and T. A. Maksimova, “Instrumentation complex for comprehensive study of atmospheric parameters,” Int. J. Remote Sens. 35 (15), 5651–5676 (2014).

    Google Scholar 

  14. G. G. Matvienko, B. D. Belan, M. V. Panchenko, O. A. Romanovskii, S. M. Sakerin, D. M. Kabanov, S. A. Turchinovich, Y. S. Turchinovich, T. A. Eremina, V. S. Kozlov, S. A. Terpugova, V. V. Pol’kin, E. P. Yausheva, D. G. Chernov, T. B. Zhuravleva, T. V. Bedareva, S. L. Odintsov, V. D. Burlakov, A. V. Nevzorov, M. Yu. Arshinov, G. A. Ivlev, D. E. Savkin, A. V. Fofonov, V. A. Gladkikh, A. P. Kamardin, Yu. S. Balin, G. P. Kokhanenko, I. E. Penner, S. V. Samoilova, P. N. Antokhin, V. G. Arshinova, D. K. Davydov, A. V. Kozlov, D. A. Pestunov, T. M. Rasskazchikova, D. V. Simonenkov, T. K. Sklyadneva, G. N. Tolmachev, S. B. Belan, V. P. Shmargunov, A. S. Kozlov, and S. B. Malyshkin, “Complex experiment on studying the microphysical, chemical, and optical properties of aerosol particles and estimating the contribution of atmospheric aerosol to earth radiation budget,” Atmos. Meas. Tech. 8, 4507–4520 (2015).

    Article  Google Scholar 

  15. G. P. Kokhanenko, Yu. S. Balin, S. V. Nasonov, I. E. Penner, S. V. Samoilova, I. N. Smalikho, A. V. Falits, T. M. Rasskazchikova, V. A. Gladkikh, S. L. Odintsov, A. P. Kamardin, P. N. Antokhin, and M. Yu. Arshinov, “Integrated monitoring of the atmospheric boundary layer dynamics by remote sensing methods in June 2015 in Tomsk,” Proc. SPIE—Int. Soc. Opt. Eng. 100353Y (2016). https://doi.org/10.1117/12.2249120

  16. A. A. Mamysheva and S. L. Odintsov, “Experimental estimate of turbulent kinetic energy in the near-surface layer over urban area,” Opt. Atmos. Okeana 24 (9), 817–827 (2011).

    Google Scholar 

  17. A. A, Mamysheva and S. L. Odintsov, “Analysis of the dependence of the normalized turbulent kinetic energy on the wind direction and type of stratification in the near-ground atmospheric layer over urbanized territory,” Atmos. Ocean. Opt. 25 (5), 377–386 (2012).

  18. A. A, Mamysheva and S. L. Odintsov, “Normalized variance of wind velocity components in the atmospheric surface layer over an urban territory,” Opt. Atmos. Okeana 25 (7), 621–628 (2012).

  19. V. A. Gladkikh, I. V. Nevzorova, S. L. Odintsov, and V. A. Fedorov, “Experimental estimates of turbulence anisotropy tensor components in the surface air layer,” Atmos. Ocean. Opt. 28 (1), 34–42 (2015).

    Article  Google Scholar 

  20. V. A. Gladkikh, I. V. Nevzorova, and S. L. Odintsov, “Statistics of the gustiness factor in the surface air layer. Part 1,” Uspekhi Sovremennogo Estestvoznaniya, No. 11, 96–102 (2018).

    Google Scholar 

  21. V. A. Gladkikh, I. V. Nevzorova, and S. L. Odintsov, “Methodological aspects of estimation of the turbulence outer scales,” Uspekhi Sovremennogo Estestvoznaniya, No. 5, 64–70 (2018).

    Google Scholar 

  22. V. A. Gladkikh, I. V. Nevzorova, S. L. Odintsov, and V. A. Fedorov, “Structure functions of air temperature over an inhomogeneous underlying surface. Part I. Typical forms of structure functions,” Atmos. Ocean. Opt. 27 (2), 147–153 (2014).

    Article  Google Scholar 

  23. V. A. Gladkikh, I. V. Nevzorova, S. L. Odintsov, and V. A. Fedorov, “Structure functions of air temperature over an inhomogeneous underlying surface. Part II. Statistics of structure functions' parameters,” Atmos. Ocean. Opt. 27 (2), 154–163 (2014).

    Article  Google Scholar 

  24. V. A. Gladkikh, I. V. Nevzorova, S. L. Odintsov, and V. A. Fedorov, “Structure functions of wind velocity components over an inhomogeneous underlying surface,” Atmos. Ocean. Opt. 28 (3), 273–281 (2015).

    Article  Google Scholar 

  25. V. A. Fedorov, “Spectral contributions of sections of the power-law structure function of random processes with stationary increments: Part 1—The exponent is less than unity,” Atmos. Ocean. Opt. 32 (3), 235–241 (2019).

    Article  Google Scholar 

  26. V. A. Fedorov, “Spectral contributions of sections of power-law structure function of random processes with stationary increments: Part 2—The exponent is greater than unity // Atmos. Ocean. Opt. 32 (3), 242–247 (2019).

    Article  Google Scholar 

  27. V. P. Lukin, N. N. Botygina, O. N. Emaleev, L. V. Antoshkin, P. A. Konyaev, V. A. Gladkikh, V. P. Mamyshev, and S. L. Odintsov, “Simultaneous measurements of structure characteristics of atmospheric refraction by optical and acoustic methods,” Atmos. Ocean. Opt. 25 (1), 6–11 (2012).

    Article  Google Scholar 

  28. V. P. Lukin, N. N. Botygina, V. A. Gladkikh, O. N. Emaleev, P. A. Konyaev, S. L. Odintsov, and A. V. Torgaev, “Comparative measurements of the atmospheric turbulence strength with optical and acoustir measuring devices,” in Proc. XX International Symposium “Atmospheric and Ocean Optics. Atmospheric Physics” (Publishing House of IAO SB RAS, Tomsk, 2014), p. B333–B337 [in Russian].

  29. V. A. Gladkikh, V. P. Mamyshev, and S. L. Odintsov, “Experimental estimates of the structure parameter of the refractive index for optical waves in the surface air layer,” Atmos. Ocean. Opt. 28 (5), 426–435 (2015).

    Article  Google Scholar 

  30. V. A. Gladkikh and S. L. Odintsov, “Dependence of the structure parameter of optical wave refractive index on the air temperature dispersion and a vertical turbulent heat flux in the surface air layer (empirical models),” Proc. XXI International Symposium “Atmospheric and Ocean Optics. Atmospheric Physics” (Publishing House of IAO SB RAS, Tomsk, 2015), p. D400–D409 [in Russian]

  31. S. L. Odintsov, V. A. Gladkikh, A. P. Kamardin, V. P. Mamyshev, and I. V. Nevzorova, “Estimates of the refractive index and regular refraction of optical waves in the atmospheric boundary layer: Part 1, Refractive index,” Atmos. Ocean. Opt. 31 (5), 437–444 (2018).

    Article  Google Scholar 

  32. S. L. Odintsov, V. A. Gladkikh, A. P. Kamardin, V. P. Mamyshev, and I. V. Nevzorova, “Estimates of the refractive index and regular refraction of optical waves in the atmospheric boundary layer: Part 2, Laser beam refraction,” Atmos. Ocean. Opt. 31 (5), 445–450 (2018).

    Article  Google Scholar 

  33. S. L. Odintsov, V. A. Gladkikh, A. P. Kamardin, V. P. Mamyshev, and I. V. Nevzorova, “Results of acoustic diagnostics of atmospheric boundary layer in estimation of the turbulence effect on laser beam parameters,” Atmos. Ocean. Opt. 31 (6), 553–563 (2018).

    Article  Google Scholar 

  34. S. L. Odintsov, V. A. Gladkikh, A. P. Kamardin, V. P. Mamyshev, and I. V. Nevzorova, “Estimation of the turbulence and regular refraction effects on laser beam parameters in the atmospheric boundary layer: Part 1, Coherence length and turbulent broadening,” Atmos. Ocean. Opt. 32 (1), 19–25 (2019).

    Article  Google Scholar 

  35. S. L. Odintsov, V. A. Gladkikh, A. P. Kamardin, V. P. Mamyshev, and I. V. Nevzorova, “Estimation of the turbulence and regular refraction effect on laser beam parameters in the atmospheric boundary layer: Part 2, Laser beam broadening under strong regular refraction,” Atmos. Ocean. Opt. 32 (1), 26–32 (2019).

    Article  Google Scholar 

  36. V. P. Mamyshev, S. L. Odintsov, V. G. Astafurov, and S. M. Pastukhova, “Statistics of envelopes of tonal acoustic signals in the surface air layer,” Atmos. Ocean. Opt. 27 (3), 286–290 (2014).

    Article  Google Scholar 

  37. V. P. Mamyshev, A. P. Kamardin, and S. L. Odintsov, “Amplitude fluctuations of pulsed high-directivity acoustic signals during propagation through the surface air layer,” in Proc. XXIII International Symposium “Atmospheric and Ocean Optics. Atmospheric Physics” (Publishing House of IAO SB RAS, Tomsk, 2017), p. B274–B277 [in Russian].

  38. V. P. Mamyshev and S. L. Odintsov, “Phase variance of narrow-band acoustic signals on near-surface paths,” Atmos. Ocean. Opt. 30 (3), 236–242 (2017).

    Article  Google Scholar 

  39. V. P. Mamyshev and S. L. Odintsov, “Narrow-band acoustic signal phase probability distribution,” in Proc. XXII International Symposium “Atmospheric and Ocean Optics. Atmospheric Physics” (Publishing House of IAO SB RAS, Tomsk, 2016), p. B312–B316 [in Russian].

  40. V. P. Mamyshev and S. L. Odintsov, “Coherence of sonic waves at short near-surface paths,” Proc. SPIE—Int. Soc. Opt. Eng. 9680 (2015). https://doi.org/10.1117/12.2205342

  41. V. A. Fedorov, “Performance characteristics of determination of time delays, using quadratic interpolation of maxima of generalized cross-correlation functions. Part 1. Systematic errors,” Opt. Atmos. Okeana. 25 (7), 566–571 (2012).

    Google Scholar 

  42. V. A. Fedorov, “Performance characteristics of determination of time delays with quadratic interpolation of maxima of generalized cross-correlation functions. Part 2. Random errors,” Opt. Atmos. Okeana. 25 (8), 678–683 (2012).

    Google Scholar 

  43. N. N. Bochkarev, “Study of acoustic emission of ultrashort laser pulses in air and aerosol,” Nauchnyj Al’manakh. Fiz.-Matem. Nauki, No. 8 (10), 1082–1090 (2015).

    Google Scholar 

  44. N. N. Bochkarev, “Optoacoustic study of femtosecond laser pulser propagation in air and aerosol,” Nauch. Vest., No. 1 (3), 74–83 (2015).

  45. N. N. Bochkarev, “Acoustic emission of ultrashort laser pulses in air and aerosols,” Bull. Rus. Acad. Sci. Phys. 80 (1), 50–54 (2016).

    Article  Google Scholar 

Download references

Funding

The work on acoustic diagnostics of the atmospheric boundary layer and sound propagation were supported by programs of the Presidium and specialized departments of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. L. Odintsov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Nikol’skii

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Odintsov, S.L. Development and Use of Acoustic Tools for Diagnostics of the Atmospheric Boundary Layer. Atmos Ocean Opt 33, 104–108 (2020). https://doi.org/10.1134/S1024856020010091

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856020010091

Keywords:

Navigation