Skip to main content
Log in

High-Resolution Molecular Spectroscopy at the Institute of Atmospheric Optics: Current Status of Theoretical and Experimental Research

  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

Results of high-resolution molecular spectroscopy researches carried out at V.E. Zuev Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences (IAO SB RAS) during the last five years are briefly reviewed. We consider theoretical problems of vibrational-rotational spectra of basic molecules of atmospheric gases, spectral line profiles, problems of the atmospheric continuum absorption, and databases of molecular spectral characteristics in the gas phase. In the section of experimental researches, the main attention is paid to the Fourier spectroscopy results obtained with laser diodes as radiation sources, as well as with the Fourier spectrometer coupled to a multipass 30-meter cell with computer control of the optical path length under variations of gas temperature and pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. V. E. Zuev, Yu. S. Makushkin, and Yu. N. Ponomarev, Modern Problems of Atmospheric Optics. Vol. 3. Spectroscopy of the Atmosphere (Gidrometeoizdat, Leningrad, 1987) [in Russian].

  2. M. M. Makogon, Yu. N. Ponomarev, and L. N. Sinitsa, “Development of the laser spectroscopy instrumentation at the Institute of Atmospheric Optics SB RAS,” Opt. Atmos. Okeana 22 (10), 958–965 (2009).

    Google Scholar 

  3. T. M. Petrova, A. M. Solodov, and A. A. Solodov, “Measurements of water vapor line shifts in the 8650–9020 cm–1 region caused by pressure of atmospheric gases,” Atmos. Ocean. Opt. 23 (6), 455–461 (2010).

    Article  Google Scholar 

  4. T. E. Klimeshina, T. M. Petrova, O. B. Rodimova, A. A. Solodov, and A. M. Solodov, “The CO2 absorption near band heads in the 8000 cм–1 region,” Opt. Atmos. Okeana 26 (11), 925–931 (2013).

    Google Scholar 

  5. I. V. Ptashnik, T. M. Petrova, Yu. N. Ponomarev, A. A. Solodov, and A. M. Solodov, “Water vapor continuum absorption in near-IR atmospheric windows,” Atmos. Ocean. Opt. 28 (2), 115–120 (2015).

    Article  Google Scholar 

  6. G. G. Matvienko, V. I. Perevalov, Yu. N. Ponomarev, L. N. Sinitsa, and V. N. Cherepanov, “High-resolution molecular spectroscopy in tomsk: establishment, development, and current status,” Rus. Phys. J. 59 (4), 490–501 (2016).

    Article  Google Scholar 

  7. Yu. S. Makushkin and Vl. G. Tyuterev, Disturbance Methods and Effective Hamiltonians in Molecular Spectroscopy (Nauka, Novosibirsk, 1984) [in Russian].

  8. Vl. G. Tyuterev and V. I. Perevalov, “Generalized contact transformations of a Hamiltonian with a quasi-degenerate zero-order approximation,” Chem. Phys. Lett. 74 (3), 494–502 (1980).

  9. V. I. Perevalov, Vl. G. Tyuterev, and B. I. Zhilinskii, “Reduced effective Hamiltonians for degenerate vibrational states of methane-type molecules,” J. Mol. Spectrosc. 103 (1), 147–159 (1984).

    Article  ADS  Google Scholar 

  10. V. I. Perevalov, Vl. G. Tyuterev, and B. I. Zhilinskii, “Reduced Hamiltonian for 0100 and 0001 interacting states of tetrahedral XY4 molecules: Calculated r2J2- and R2J3-type parameters for ν2 and ν4 bands of methane,” J. Mol. Spectrosc. 111 (1), 1–19 (1985).

    Article  ADS  Google Scholar 

  11. E. I. Lobodenko, O. N. Sulakshina, V. I. Perevalov, and Vl. G. Tyuterev, “Reduced effective Hamiltonian for Coriolis-interacting νn and νt fundamentals of C molecules,” J. Mol. Spectrosc. 126 (1), 159–170 (1987).

    Article  ADS  Google Scholar 

  12. V. I. Perevalov and Vl. G. Tyuterev, “Reduction of the centrifugal distortion Hamiltonian of asymmetric top molecules in the case of accidental resonances: Two interacting states. Lower-order terms,” J. Mol. Spectrosc. 96 (1), 56–76 (1982).

    Article  ADS  Google Scholar 

  13. V. I. Perevalov and Vl. G. Tyuterev, “Model with unambiguously retrieved parameters for joint processing of two resonant vibrational states. Anharmonic resonances in molecules of asymmetric top type,” Izv. Vyssh. Ucheb. Zaved. Fiz. 25 (2), 108–112 (1982).

    Google Scholar 

  14. J.-L. Teffo, O. N. Sulakshina, and V. I. Perevalov, “Effective Hamiltonian for rovibrational energies and line intensities of carbon dioxide,” J. Mol. Spectrosc. 96 (1), 56–76 (1982).

    Article  Google Scholar 

  15. J. L. Teffo, V. I. Perevalov, and O. M. Lyulin, “Reduced effective Hamiltonian for a global treatment of rovibrational energy levels of nitrous oxide,” J. Mol. Spectrosc. 168 (2), 390–403 (1994).

    Article  ADS  Google Scholar 

  16. V. I. Perevalov, E. I. Lobodenko, and J. L. Teffo, “Reduced effective Hamiltonian for global fitting of C2H2 rovibrational lines,” Proc. SPIE—Int. Soc. Opt. Eng. 3090, 143–149 (1997).

  17. V. I. Starikov and Vl. G. Tyuterev, Intermolecular Interactions and Theoretical Methods in Spectroscopy of Nonrigid Molecules (Spektr, Tomsk, 1997) [in Russian].

  18. V. I. Starikov, S. A. Tashkun, and Vl. G. Tyuterev, “Description of vibration-rotation energies of nonrigid triatomic molecules using the generating function method: Bending states and second triad of water,” J. Mol. Spectrosc. 151 (1), 130–147 (1992).

    Article  ADS  Google Scholar 

  19. Vl. G. Tyuterev, “The generating function approach to the formulation of the effective rotational Hamiltonian: A simple closed form model describing strong centrifugal distortion in water-type nonrigid molecules,” J. Mol. Spectrosc. 151 (1), 97–130 (1992).

  20. A. N. Duchko and A. D. Bykov, “Resummation of divergent perturbation series: Application to the vibrational states of H2CO molecule,” J. Chem. Phys. 143 (15), 4102–4115 (2015).

    Article  Google Scholar 

  21. S. A. Tashkun, V. I. Perevalov, J.-L. Teffo, L. S. Rothman, and Vl. G. Tyuterev, “Global fitting of 12C16O2 vibrational-rotational line positions using the effective Hamiltonian approach,” J. Quant. Spectrosc. Radiat. Transfer 60 (5), 785–801 (1998).

    Article  ADS  Google Scholar 

  22. S. A. Tashkun, V. I. Perevalov, J.-L. Teffo, and Vl. G. Tyuterev, “Global fit of 12C16O2 vibrational-rotational line intensities using the effective operator approach,” J. Quant. Spectrosc. Radiat. Transfer 62 (5), 571–598 (1999).

    Article  ADS  Google Scholar 

  23. O. M. Lyulin and V. I. Perevalov, “Global modelling of vibration-rotation spectra of acetylene molecule,” J. Quant. Spectrosc. Radiat. Transfer 177, 59–74 (2016).

    Article  ADS  Google Scholar 

  24. V. I. Perevalov, S. A. Tashkun, R. V. Kochanov, A.‑W. Liu, and A. Campargue, “Global modeling of the 14N216O line positions within the framework of the polyad model of effective Hamiltonian,” J. Quant. Spectrosc. Radiat. Transfer 113 (11), 1004–1012 (2012).

    Article  ADS  Google Scholar 

  25. A. A. Lukashevskaya, O. M. Lyulin, A. Perrin, and V. I. Perevalov, “Global modeling of NO2 line positions,” Atmos. Ocean. Opt. 28 (3), 216–231 (2015).

    Article  Google Scholar 

  26. O. N. Sulakshina and Yu. G. Borkov, “Global modelling of the experimental energy levels and observed line positions: Dunham coefficients for the ground state of 14N16O,” Mol. Phys. 116, 3519–3529 (2018).

    Article  ADS  Google Scholar 

  27. S. A. Tashkun, V. I. Perevalov, R. R. Gamache, and J. Lamouroux, “CDSD-296, High Resolution Carbon Dioxide Spectroscopic Databank: Version for atmospheric applications,” J. Quant. Spectrosc. Radiat. Transfer 152 (1), 45–72 (2015).

    Article  ADS  Google Scholar 

  28. S. A. Tashkun, V. I. Perevalov, R. V. Kochanov, A.‑W. Liu, and S.-M. Hu, “Global fittings of 14N15N16O and 15N14N16O vibrational-rotational line positions using the effective Hamiltonian approach,” J. Quant. Spectrosc. Radiat. Transfer 111 (9), 1089–1105 (2010).

    Article  ADS  Google Scholar 

  29. S. A. Tashkun, V. I. Perevalov, E. V. Karlovets, S. Kassi, and A. Campargue, “High sensitivity cavity ring down spectroscopy of N2O near 1.22 μm: (II) 14N216O line intensity modeling and global fit of 14N218O line positions,” J. Quant. Spectrosc. Radiat. Transfer 176, 62–69 (2016).

    Article  ADS  Google Scholar 

  30. O. M. Lyulin, D. Jacquemart, N. Lacome, S. A. Tashkun, and V. I. Perevalov, “Line parameters of 15N216O from Fourier transform measurements in the 5800–7600 cm–1 region and global fitting of line positions from 1000 to 7600 cm–1,” J. Quant. Spectrosc. Radiat. Transfer 111 (3), 345–356 (2010).

    Article  ADS  Google Scholar 

  31. S. A. Tashkun, V. I. Perevalov, R. R. Gamache, and J. Lamouroux, “CDSD-296, high resolution Carbon Dioxide Spectroscopic Databank: An update,” J. Quant. Spectrosc. Radiat. Transfer 228, 124–131 (2019).

    Article  ADS  Google Scholar 

  32. S. A. Tashkun, V. I. Perevalov, J.-L. Teffo, A. D. Bykov, and N. N. Lavrentieva, “CDSD-1000, the high-temperature Carbon Dioxide Spectroscopic Databank,” J. Quant. Spectrosc. Radiat. Transfer 82 (1-4), 165–196 (2003).

    Article  ADS  Google Scholar 

  33. S. A. Tashkun and V. I. Perevalov, “CDSD-4000: High-resolution, high-temperature Carbon Dioxide Spectroscopic Databank,” J. Quant. Spectrosc. Radiat. Transfer 112 (9), 1403–1410 (2011).

    Article  ADS  Google Scholar 

  34. O. M. Lyulin and V. I. Perevalov, “ASD-1000: high-resolution, high-temperature Acetylene Spectroscopic Databank,” J. Quant. Spectrosc. Radiat. Transfer 201, 94–103 (2017).

    Article  ADS  Google Scholar 

  35. S. A. Tashkun, V. I. Perevalov, and N. N. Lavrentieva, “NOSD-1000, the high-temperature Nitrous Oxide Spectroscopic Databank,” J. Quant. Spectrosc. Radiat. Transfer 177, 43–48 (2016).

    Article  ADS  Google Scholar 

  36. A. A. Lukashevskaya, N. N. Lavrentieva, A. S. Dudaryonok, and V. I. Perevalov, “NDSD-1000: high-resolution, high-temperature Nitrogen Dioxide Spectroscopic Databank,” J. Quant. Spectrosc. Radiat. Transfer 184, 205–217 (2016).

    Article  ADS  Google Scholar 

  37. A. A. Lukashevskaya, N. N. Lavrentieva, A. S. Dudaryonok, and V. I. Perevalov, “Corrected version of the NDSD-1000 Databank,” J. Quant. Spectrosc. Radiat. Transfer 184, 205–217 (2016).

    Article  ADS  Google Scholar 

  38. I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M. A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, Vl. G. Tyuterev, A. Barbe, A. G. Csaszar, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Muller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, AuweraJ. Vander, G. Wagner, J. Wilzewski, P. Wcislo, S. Yu, and E. J. Zak, “The HITRAN 2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).

    Article  ADS  Google Scholar 

  39. N. Jacquinet-Husson, R. Armante, N. A. Scott, A. Chedin, L. Crepeau, C. Boutammine, A. Bouhdaoui, C. Crevoisier, V. Capelle, C. Boonne, N. Poulet-Crovisier, A. Barbe, BennerD. Chris, V. Boudon, L. R. Brown, J. Buldyreva, A. Campargue, L. H. Coudert, V. M. Devi, M. J. Down, B. J. Drouin, A. Fayt, C. Fittschen, J.-M. Flaud, R. R. Gamache, J. J. Harrison, C. Hill, O. Hodnebrog, S.-M. Hu, D. Jacquemart, A. Jolly, E. Jimenez, N. N. Lavrentieva, A.‑W. Liu, L. Lodi, O. M. Lyulin, S. T. Massie, S. Mikhailenko, H. S. P. Muller, O. V. Naumenko, A. Nikitin, C. J. Nielsen, J. Orphal, V. Perevalov, A. Perrin, E. Polovtseva, A. Predoi-Cross, M. Rotger, A. A. Ruth, S. S. Yu, K. Sung, S. A. Tashkun, J. Tennyson, Vl. G. Tyuterev, J. Vander Auwera, B. A. Voronin, and A. Makie, “The 2015 edition of the GEISA spectroscopic database,” J. Mol. Spectrosc. 327, 31–72 (2016).

    Article  ADS  Google Scholar 

  40. L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HITEMP, the High-Temperature Molecular Spectroscopic Database,” J. Quant. Spectrosc. Radiat. Transfer 111 (15), 2139–2150 (2010).

    Article  ADS  Google Scholar 

  41. R. J. Hargreaves, I. E. Gordon, L. S. Rothman, S. A. Tashkun, V. I. Perevalov, A. A. Lukashevskaya, S. N. Yurchenko, J. Tennyson, S. Holger, and P. Muller, “Spectroscopic line parameters of NO, NO2, and N2O for the HITEMP database,” J. Quant. Spectrosc. Radiat. Transfer 232, 35–53 (2019).

    Article  ADS  Google Scholar 

  42. M. Rey, A. V. Nikitin, and V. G. Tyuterev, “Complete nuclear motion Hamiltonian in the irreducible normal mode tensor operator formalism for the methane molecule,” J. Chem. Phys. 136 (24), 244106 (2012).

    Article  ADS  Google Scholar 

  43. A. V. Nikitin, M. Rey, and V. G. Tyuterev, “An efficient method for energy levels calculation using full symmetry and exact kinetic energy operator: Tetrahedral molecules,” J. Chem. Phys. 142 (9), 094118 (2015).

    Article  ADS  Google Scholar 

  44. A. V. Nikitin, M. Rey, and V. G. Tyuterev, “New dipole moment surfaces of methane,” Chem. Phys. Lett. 565 (5), 5–11 (2013).

    Article  ADS  Google Scholar 

  45. M. Rey, A. V. Nikitin, and V. G. Tyuterev, “Theoretical hot methane line list up to T = 2000 K for astrophysical applications,” Astrophys. J. 788, 1–10 (2014).

    Article  Google Scholar 

  46. M. Rey, A. V. Nikitin, and V. G. Tyuterev, “Ab initio ro-vibrational Hamiltonian in irreducible tensor formalism: A method for computing energy levels from potential energy surfaces for symmetric-top molecules,” Mol. Phys. 108, 2121–2135 (2010).

    Article  ADS  Google Scholar 

  47. A. V. Nikitin, M. Rey, and V. G. Tyuterev, “High order dipole moment surfaces of PH3 and ab initio intensity predictions in the octad range,” J. Mol. Spectrosc. 305, 40–47 (2014).

    Article  ADS  Google Scholar 

  48. T. Delahaye, A. Nikitin, M. Rey, P. Szalay, V. G. Tyuterev, “A new accurate ground-state potential energy surface of ethylene and predictions for rotational and vibrational energy levels,” J. Chem. Phys. 141, 104301 (2014).

    Article  ADS  Google Scholar 

  49. A. V. Nikitin, M. Rey, A. A. Rodina, B. M. Krishna, V. G. Tyuterev, “Full-dimensional potential energy and dipole moment surfaces of GeH4 molecule and accurate first-principle rotationally resolved intensity predictions in the infrared,” J. Phys. Chem. A 120, 8983–8997 (2016).

    Article  Google Scholar 

  50. A. V. Nikitin, M. Rey, and V. G. Tyuterev, “Rotational and vibrational energy levels of methyl fluoride calculated from a new potential energy surface,” J. Mol. Spectrosc. 274, 28–34 (2012).

    Article  ADS  Google Scholar 

  51. M. Rey, I. S. Chizhmakova, A. V. Nikitin, and V. G. Tyuterev, “Understanding global infrared opacity and hot bands of greenhouse molecules with low vibrational modes from first-principles calculations: The case of CF4,” Phys. Chem. Chem. Phys. 20, 21008–21033 (2018).

    Article  Google Scholar 

  52. A. V. Nikitin, M. Rey, and V. G. Tyuterev, “First fully ab initio potential energy surface of methane with a spectroscopic accuracy,” J. Chem. Phys. 145, 114309 (2016).

    Article  ADS  Google Scholar 

  53. V. G. Tyuterev, S. A. Tashkun, M. Rey, R. V. Kochanov, A. V. Nikitin, and T. Delahaye, “Accurate spectroscopic models for methane polyads derived from a potential energy surface using high-order contact transformations,” J. Phys. Chem. A 117, 13779–13805 (2013).

    Article  Google Scholar 

  54. A. V. Nikitin, I. S. Chizhmakova, M. Rey, S. A. Tashkun, S. Kassi, D. Mondelain, A. Campargue, and V. G. Tyuterev, “Analysis of the absorption spectrum of 12CH4 in the region 5855–6250 cm–1 of the 2?3 Band,” J. Quant. Spectrosc. Radiat. Transfer 203, 341–348 (2017).

    Article  ADS  Google Scholar 

  55. E. Starikova, A. V. Nikitin, M. Rey, S. A. Tashkun, D. Mondelain, S. Kassi, A. Campargue, V. Tyuterev, “Assignment and Modeling of the Absorption Spectrum of 13CH4 at 80 K in the Region of the 2ν3 band (5853–6201 cm–1),” J. Quant. Spectrosc. Radiat. Transfer 177, 170–180 (2016).

    Article  ADS  Google Scholar 

  56. A. V. Nikitin, X. Thomas, L. Daumont, M. Rey, K. Sung, G. C. Toon, M. A. H. Smith, A. W. Mantz, S. A. Tashkun, and V. G. Tyuterev, “Measurements and modeling of long-path 12CH4 spectra in the 5300–5550 cm–1 region,” J. Quant. Spectrosc. Radiat. Transfer 202, 255–264 (2017).

    Article  ADS  Google Scholar 

  57. A. V. Nikitin, Y. A. Ivanova, M. Rey, S. A. Tashkun, G. C. Toon, K. Sung, and Vl. G. Tyuterev, “Analysis of PH3 spectra in the octad range 2733–3660 cm–1,” J. Quant. Spectrosc. Radiat. Transf 203, 472–479 (2017).

    Article  ADS  Google Scholar 

  58. M. Rey, A. V. Nikitin, Y. Babikov, and V. G. Tyuterev, “TheoReTS—an information system for theoretical spectra based on variational predictions from molecular potential energy and dipole moment surfaces,” J. Mol. Spectrosc. 327, 138–158 (2016).

    Article  ADS  Google Scholar 

  59. S. N. Mikhailenko, Yu. L. Babikov, and V. F. Golovko, “Information-calculating system Spectroscopy of Atmospheric Gases. The structure and main functions,” Opt. Atmos. Okeana. 18 (9), 765–776 (2005).

    Google Scholar 

  60. Yu. L. Babikov, S. N. Mikhailenko, A. Barbe, and Vl. G. Tyuterev, “S&MPO—an information system for ozone spectroscopy on the web,” J. Quant. Spectrosc. Radiat. Transfer 145, 169–196 (2014).

    Article  ADS  Google Scholar 

  61. S. A. Tashkun and V. G. Tyuterev, “GIP: A program for experimental data reduction in molecular spectroscopy,” Proc. SPIE—Int. Soc. Opt. Eng. 2205, 188–191 (1994).

  62. R. V. Kochanov, V. I. Perevalov, and S. A. Tashkun, “Integration of CO2 spectral line parameters from the CDSD databanks into the Virtual Atomic and Molecular Data Center (VAMDC),” Atmos. Ocean. Opt. 27 (4), 536–542 (2014).

    Article  Google Scholar 

  63. M. L. Dubernet, B. K. Antony, Y. A. Ba, Yu. L. Babikov, K. Bartschat, V. Boudon, B. J. Braams, H.‑K. Chung, F. Daniel, F. Delahaye, G. Del Zanna, J. de Urquijo, M. S. Dimitrijević, A. Domaracka, M. Doronin, B. J. Drouin, C. P. Endres, A. Z. Fazliev, S. V. Gagarin, I. E. Gordon, P. Gratier, U. Heiter, C. Hill, D. Jevremović, C. Joblin, A. Kasprzak, E. Krishnakumar, G. Leto, P. A. Loboda, T. Louge, S. Maclot, B. P. Marinković, A. Markwick, T. Marquart, H. E. Mason, N. J. Mason, C. Mendoza, A. A. Mihajlov, T. J. Millar, N. Moreau, G. Mulas, Yu. Pakhomov, P. Palmeri, S. Pancheshnyi, V. I. Perevalov, N. Piskunov, J. Postler, P. Quinet, E. Quintas-Sánchez, Yu. Ralchenko, Y.-J. Rhee, G. Rixon, L. S. Rothman, E. Roueff, T. Ryabchikova, S. Sahal-Brechot, P. Scheier, S. Schlemmer, B. Schmitt, E. Stempels, S. Tashkun, J. Tennyson, Vl. G. Tyuterev, V. Vujčić, V. Wakelam, N. A. Walton, O. Zatsarinny, C. J. Zeippen, and C. M. Zwölf, “The Virtual Atomic and Molecular Data Centre (VAMDC) consortium,” J. Phys. B: Atmos. Mol. Opt. Phys 49, 074003 (2016).

    Article  ADS  Google Scholar 

  64. W. Voigt, Uber Das Gesetz Intensitatsverteilung Innerhalb Der Linien Eines Gasspektrams (Sitzber. Bayr Akad, Munchen, Berlin, 1912).

    MATH  Google Scholar 

  65. A. D. Bykov, N. N. Lavrentieva, and L. N. Sinitsa, “Calculation of CO2 broadening and shift coefficients for high-temperature databases,” Atmos. Ocean. Opt. 13 (12), 1015–1019 (2000).

    Google Scholar 

  66. A. S. Dudarenok, N. N. Lavrentieva, and Q. Ma, “The average energy difference method for calculation of line broadening of asymmetric tops,” Atmos. Ocean. Opt. 28 (6), 503–509 (2015).

    Article  Google Scholar 

  67. L. R. Brown and C. Plymate, “H2-broadened H216O in four infrared bands between 55 and 4045 cm–1,” J. Quant. Spectrosc. Radiat. Transfer 56 (2), 263–282 (1996).

    Article  ADS  Google Scholar 

  68. M. R. Cherkasov, “Broadening by the pressure of overlapping spectral lines,” Opt. Spectrosc. 40 (1), 7–13 (1976).

    ADS  Google Scholar 

  69. M. R. Cherkasov, “Collisional interference of vibrational bands in the molecular spectra,” Atmos. Ocean. Opt. 13 (4), 299–306 (2000).

    Google Scholar 

  70. R. H. Dicke, “The effect of collisions upon the doppler width of spectral lines,” Phys. Rev. 89, 472–473 (1953).

    Article  ADS  Google Scholar 

  71. M. Nelkin and A. Ghatak, “Simple binary collision model for Van Hove’s Gs(r, t),” Phys. Rev. 135 (1964).

  72. S. G. Rautian and I. I. Sobel’man, “The effect of collisions on the Doppler broadening of spectral lines,” Sov. Phys. Usp. 9, 701–716 (1967).

    Article  ADS  Google Scholar 

  73. L. Galatry, “Simultaneous effect of Doppler and foreign gas broadening on spectral lines,” Phys. Rev. 122, 1218–1223 (1961).

    Article  ADS  MATH  Google Scholar 

  74. M. I. Podgoretskii and A. V. Stepanov, “The Doppler width of emission and absorption lines,” JETP 13 (2), 393 (1961).

    Google Scholar 

  75. S. G. Rautian, ”The diffusion approximation in the problem of migration of particles in a gas,” Sov. Phys. Usp. 34 (11), 1008–1017 (1991).

    Article  ADS  Google Scholar 

  76. V. P. Kochanov, ”Comparison of spectral line profiles in hard and soft collision models,” Atmos. Ocean. Opt. 32 (3), 257–265 (2019).

    Article  Google Scholar 

  77. V. P. Kochanov, “Line profiles for the description of line mixing, narrowing, and dependence of relaxation constants on speed,” J. Quant. Spectrosc. Radiat. Transfer 112, 1931–1941 (2011).

    Article  ADS  Google Scholar 

  78. V. P. Kochanov, “Collision line narrowing and mixing of multiplet spectra,” J. Quant. Spectrosc. Radiat. Transfer 66, 313–325 (2000).

    Article  ADS  Google Scholar 

  79. V. P. Kochanov, “Effect of diffraction of molecules on collisional line narrowing,” Opt. Spectrosc. 89 (5), 684–689 (2000).

    Article  ADS  Google Scholar 

  80. V. P. Kochanov, “Manifestations of small-angle molecular scattering in spectral line profiles,” JETP 118 (3), 335–350. 2014.

    Article  ADS  Google Scholar 

  81. V. P. Kochanov, “Combined effect of small- and large-angle scattering collisions on a spectral line shape,” J. Quant. Spectrosc. Radiat. Transfer 159, 32–38 (2015).

    Article  ADS  Google Scholar 

  82. V. P. Kochanov, “Speed-Dependent Spectral Line Profile Including Line Narrowing and Mixing,” J. Quant. Spectrosc. Radiat. Transfer 177, 261–268 (2016).

    Article  ADS  Google Scholar 

  83. V. P. Kochanov, “On parameterization of spectral line profiles including the speed-dependence in the case of gas mixture,” J. Quant. Spectrosc. Radiat. Transfer 189, 18–23 (2017).

    Article  ADS  Google Scholar 

  84. L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J.-P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J.‑M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J.‑Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110 (9-10), 533–572 (2009).

    Article  ADS  Google Scholar 

  85. V. I. Serdyukov, L. N. Sinitsa, S. S. Vasil’chenko, and B. A. Voronin, “High-Sensitive Fourier-Transform Spectroscopy with Short-Base Multipass Absorption Cells,” Atmos. Oceanic Opt. 29, 329–36 (2013).

    Article  Google Scholar 

  86. V. I. Serdyukov, L. N. Sinitsa, and S. S. Vasil’chenko, “Highly sensitive Fourier transform spectroscopy with LED sources,” J. Mol. Spectrosc. 290, 13–17 (2013).

    Article  ADS  Google Scholar 

  87. V. I. Serdyukov and L. N. Sinitsa, “New features of an FT-spectrometer using LED sources,” J. Quant. Spectrosc. Radiat. Transfer 177, 248–252 (2016).

    Article  ADS  Google Scholar 

  88. L. N. Sinitsa, V. I. Serdyukov, S. S. Vasil’chenko, A. D. Bykov, A. P. Shcherbakov, E. R. Polovtseva, and K. V. Kalinin, “LED-based Fourier transform spectroscopy of H216O in the range 15 500–16 000 cm−1,” Opt. Spectrosc. 118 (5), 729–734 (2015).

    Article  Google Scholar 

  89. L. N. Sinitsa, V. I. Serdyukov, E. R. Polovtseva, A. D. Bykov, and A. P. Shcherbakov, “Study of the water vapor absorption spectrum in the visible spectral region from 19 480 to 20 500 cm−1,” Atmos. Ocean. Opt. 31 (4), 329–334 (2018).

    Article  Google Scholar 

  90. S. N. Mikhailenko, V. I. Serdyukov, and L. N. Sinitsa, “LED-based Fourier transform spectroscopy of H2O18 in the 15,000–16,000 cm–1 range,” J. Quant. Spectrosc. Radiat. Transfer 156, 36–46 (2015).

    Article  ADS  Google Scholar 

  91. S. N. Mikhailenko, V. I. Serdyukov, L. N. Sinitsa, and S. S. Vasil’chenko, “LED-based Fourier-transform spectroscopy of H218O in the range 15 000–15 700 cm−1,” Opt. Spectrosc. 115 (6), 814–822 (2013).

    Article  ADS  Google Scholar 

  92. S. N. Mikhailenko, V. I. Serdyukov, and L. N. Sinitsa, “Study of H216O and H218O absorption in the 16,460–17,200 cm–1 range using LED-based Fourier transform spectroscopy,” J. Quant. Spectrosc. Radiat. Transfer 217, 170–177 (2018).

    Article  ADS  Google Scholar 

  93. V. I. Serdyukov and L. N. Sinitsa, “The absorption spectrum of D2O in the region of 0.97 μm: The 3ν1 + ν3 vibrational–rotational band,” Opt. Spectrosc. 123 (2), 54–61 (2017).

    Article  Google Scholar 

  94. V. I. Serdukov, L. N. Sinitsa, T. V. Kruglova, E. R. Polovtseva, A. D. Bykov, and A. P. Shcherbakov, “D2O absorption spectrum in the region near 0.95 μm: The ν1 + 3ν3 rotational-vibrational band,” Atmos. Oceanic Opt. 30 (2), 129–133 (2017).

    Article  Google Scholar 

  95. V. I. Serdyukov, L. N. Sinitsa, A. D. Bykov, E. R. Polovtseva, B. A. Voronin, and A. P. Scherbakov, “Absorption spectrum of D2O between 10000–11000 cm−1,” J. Quant. Spectrosc. Radiat. Transfer 203, 186–193 (2017).

    Article  ADS  Google Scholar 

  96. I. A. Vasilenko, O. V. Naumenko, V. I. Serdyukov, and L. N. Sinitsa, “LED based Fourier transform absorption spectroscopy of D216O in 14800–15200 cm−1 spectral region,” J. Quant. Spectrosc. Radiat. Transfer 202, 321–327 (2017).

    Article  ADS  Google Scholar 

  97. V. I. Serdyukov, L. N. Sinitsa, E. R. Polovtseva, A. D. Bykov, B. A. Voronin, and A. P. Scherbakov, “Study of HDO absorption in the 11,200–12,400 cm−1 range using LED-based Fourier transform spectroscopy,” J. Quant. Spectrosc. Radiat. Transfer 202, 187–192 (2017).

    Article  ADS  Google Scholar 

  98. I. A. Vasilenko, V. I. Serdyukov, and L. N. Sinitsa, “Study of the HD16O absorption in the 14,800–15,500 cm−1 range using LED-based Fourier transform spectroscopy,” J. Quant. Spectrosc. Radiat. Transfer (in print).

  99. V. I. Serdyukov, L. N. Sinitsa, A. A. Lugovskoi, Yu. G. Borkov, S. A. Tashkun, and V. I. Perevalov, “LED-based Fourier transform spectroscopy of 16O12C18O and 12C18O2 in the 11260–11430 cm−1 range,” J. Quant. Spectrosc. Radiat. Transfer 177, 145–151 (2016).

    Article  ADS  Google Scholar 

  100. V. I. Serdyukov, L. N. Sinitsa, S. S. Vasilchenko, N. N. Lavrentieva, A. S. Dudaryonok, and A. P. Scherbakov, “Study of H2O line broadening and shifting by N2 pressure in the 16,600–17,060 cm−1 region using FT-spectrometer with LED source,” J. Quant. Spectrosc. Radiat. Transfer 219, 213–223 (2018).

    Article  ADS  Google Scholar 

  101. V. I. Serdyukov, L. N. Sinitsa, N. N. Lavrentieva, and A. S. Dudaryonok, “Measurements of N2-broadening and shifting parameters of the water vapour spectral lines in the 19,500–19,970 cm−1 region using FT-spectrometer with LED sourc,” J. Quant. Spectrosc. Radiat. Transfer (in print).

  102. T. M. Petrova, Yu. N. Ponomarev, A. A. Solodov, A. M. Solodov, and N. Yu. Boldyrev, “Spectrometric complex for investigation of spectra of selective and nonselective gas absorption in a wide spectral range,” Atmos. Ocean. Opt. 28 (5), 400–405 (2015).

    Article  Google Scholar 

  103. T. M. Petrova, A. M. Solodov, A. A. Solodov, O. M. Lyulin, S. A. Tashkun, and V. I. Perevalov, “Measurements of 12C16O2 line parameters in the 8790–8860, 9340–9650, and 11,430–11,505 cm−1 wavenumber regions by means of Fourier transform spectroscopy,” J. Quant. Spectrosc. Radiat. Transfer 124, 21–27 (2013).

    Article  ADS  Google Scholar 

  104. M. A. Gonzalez, V. Boudon, M. Loete, M. Rotger, M.‑T. Bourgeois, K. Didriche, M. Herman, V. A. Kapitanov, Yu. N. Ponomarev, A. A. Solodov, A. M. Solodov, and T. M. Petrova, “High-resolution spectroscopy and preliminary global analysis of C–H stretching vibrations of C2H4 in the 3000 and 6000 cm−1 regions,” J. Quant. Spectrosc. Radiat. Transfer 111 (2010).

  105. A. A. Solodov, T. Yu. Chesnokova, Yu. N. Ponomarev, A. M. Solodov, A. V. Chentsov, “Measurement of SO2 absorption spectra in the UV spectral region,” Proc. SPIE—Int. Soc. Opt. Eng. 9292, 929208–1 (2014).

  106. A. M. Solodov, A. A. Solodov, V. M. Deichuli, A. N. Kuryak, K. Yu. Osipov, T. M. Petrova, Yu. N. Ponomarev, and I. V. Ptashnik, “Modification of the experimental setup of the FTIR spectrometer and thirty-meter optical cell for measurements of weak selective and nonselective absorptions,” Atmos. Ocean. Opt. 30 (5), 485–488 (2017).

    Article  Google Scholar 

  107. Yu. N. Ponomarev and I. S. Tyryshkin, “Improvement of sensitivity and signal-to-noise ratio in a laser spectrophotometer with a 30-m long absorption cell,” Atmos. Ocean. Opt. 16 (11), 933–936 (2003).

    Google Scholar 

  108. L. Wang, V. I. Perevalov, S. A. Tashkun, A. W. Liu, and S. M. Hu, “Absorption spectra of 12C16O2 and 13C16O2 near 1.05 μm,” J. Mol. Spectrosc. 233 (2), 297–300 (2005).

    Article  ADS  Google Scholar 

  109. Q. Ma, R. H. Tipping, and C. Leforestier, “Temperature dependences of mechanisms responsible for the water-vapor continuum absorption: 1. Far wings of allowed lines,” J. Chem. Phys. 128 (1-17), 124313 (2008).

  110. L. I. Nesmelova, O. B. Rodimova, and S. D. Tvorogov, Spectral Line Profile and Intermolecular Interaction (Nauka, Novosibirsk, 1986) [in Russian].

    Google Scholar 

  111. Y. Scribano and C. Leforestier, “Contribution of water dimers absorption to the millimeter and far infrared atmospheric water continuum,” J. Chem. Phys. 126, 234301 (2007).

    Article  ADS  Google Scholar 

  112. H. G. Kjaergaard, A. L. Garden, G. M. Chaban, et al., “Calculation of vibrational transition frequencies and intensities in water dimer: Comparison of different vibrational approaches,” J. Phys. Chem. A 112, 4324–4335 (2008).

    Article  Google Scholar 

  113. I. V. Ptashnik, K. M. Smith, K. P. Shine, and D. A. Newnham, “Laboratory measurements of water vapour continuum absorption in spectral region 5000–5600 cm−1: Evidence for water dimmers,” Q. J. R. Meteorol. Soc 130, 2391–2408 (2004).

    Article  ADS  Google Scholar 

  114. D. J. Paynter, I. V. Ptashnik, K. P. Shine, and K. M. Smith, “Pure water vapor continuum measurements between 3100 and 4400 cm−1: Evidence for water dimer absorption in near atmospheric conditions,” Geophys. Rev. Lett. 34 ((1-5)), L12808 (2007).

  115. D. J. Paynter, I. V. Ptashnik, K. P. Shine, K. M. Smith, R. McPheat, and R. G. Williams, “Laboratory measurements of the water vapor continuum in the 1200–8000 cm−1 region between 293 and 351 K,” J. Geophys. Res. 114 (1-23), D21301 (2009).

  116. Y. Bouteiller and J. P. Perchard, “The vibrational spectrum of (H2O)2: Comparison between anharmonic ab initio calculations and neon matrix infrared data between 9000 and 90 cm−1,” J. Chem. Phys. 305 (1-3), 1–12 (2004).

    Google Scholar 

  117. K. Kuyanov-Prozument, M. Y. Choi, and A. F. Vilesov, “Spectrum and infrared intensities of OH-stretching bands of water dimmers,” J. Chem. Phys. 132 (1-7), 014304 (2010).

  118. I. V. Ptashnik, “Evidence for the contribution of water dimers to the near-IR water vapour self-continuum,” J. Quant. Spectrosc. Radiat. Transfer 109, 831–852 (2008).

    Article  ADS  Google Scholar 

  119. I. V. Ptashnik, K. P. Shine, and A. A. Vigasin, “Water vapour self-continuum and water dimers: 1. Analysis of recent work,” J. Quant. Spectrosc. Radiat. Transfer 112, 1286–1303 (2011).

    Article  ADS  Google Scholar 

  120. I. V. Ptashnik, T. E. Klimeshina, A. A. Solodov, and A. A. Vigasin, “Spectral composition of the water vapour self-continuum absorption within 2.7 and 6.25 μm band,” J. Quant. Spectrosc. Radiat. Transfer 228, 97–105 (2019).

    Article  ADS  Google Scholar 

  121. A. A. Vigasin, “Bound, metastable and free states of bimolecular complexes,” Infrared Phys. 32, 461–470 (1991).

    Article  ADS  Google Scholar 

  122. A. A. Vigasin, “Bimolecular absorption in atmospheric gases,” in Weakly Interacting Molecular Pairs: Unconventional Absorbers of Radiation in the Atmosphere, Ed. by C. Camy-Peyret and A.A. Vigasin (Kluwer, Netherlands, 2003).

    Google Scholar 

  123. I. V. Ptashnik, R. A. McPheat, K. P. Shine, K. M. Smith, and R. G. Williams, “Water vapor self-continuum absorption in near-infrared windows derived from laboratory measurements,” J. Geophys. Res. 116 (1-16), D16305 (2011).

  124. I. V. Ptashnik, R. A. McPheat, K. P. Shine, K. M. Smith, and R. G. Williams, “Water vapour foreign continuum absorption in near-infrared windows from laboratory measurements,” Phil. Trans. Roy. Soc. A 370, 2557–2577 (2012).

    Article  ADS  Google Scholar 

  125. E. J. Mlawer, V. H. Payne, J.-L. Moncet, J. S. Delamere, M. J. Alvarado, and D. D. Tobin, “Development and recent evaluation of the MT_CKD model of continuum absorption,” Phil. Trans. Roy. Soc. A 370, 2520–2556 (2012).

    Article  ADS  Google Scholar 

  126. K. P. Shine, I. V. Ptashnik, and G. Radel, “The water vapour continuum: Brief history and recent developments,” Surv. Geophys. 33, 535–555 (2012).

    Article  ADS  Google Scholar 

  127. I. V. Ptashnik, ”Water vapour continuum absorption: Short prehistory and current status,” Opt. Atmos. Okeana 28 (5), 443–459 (2015).

    Google Scholar 

  128. K. P. Shine, A. Campargue, D. Mondelain, R. McPheat, I. V. Ptashnik, and D. Weidmann, “The water vapour continuum in near-infrared windows—current understanding and prospects for its inclusion in spectroscopic databases,” J. Mol. Spectrosc. 327, 193–208 (2016).

    Article  ADS  Google Scholar 

  129. E. A. Serov, T. A. Odintsova, M. Y. Tretyakov, and V. E. Semenov, “On the origin of the water vapor continuum absorption within rotational and fundamental vibrational bands,” J. Quant. Spectrosc. Radiat. Transfer 193, 1–12 (2017).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the following specialists from the IAO SB RAS: V.P. Kochanov, N.N. Lavrentieva, S.N. Mikhailenko, and A.V. Nikitin for their contribution to writing this review. The authors would also like to thank Yu.V. Voronina and T.E. Klimeshina for their help in preparation of the manuscript, and A.A. Solodov and T.M. Petrova for the preparation of figures.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. I. Perevalov, Yu. N. Ponomarev, I. V. Ptashnik or L. N. Sinitsa.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by S. Ponomareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perevalov, V.I., Ponomarev, Y.N., Ptashnik, I.V. et al. High-Resolution Molecular Spectroscopy at the Institute of Atmospheric Optics: Current Status of Theoretical and Experimental Research. Atmos Ocean Opt 33, 10–26 (2020). https://doi.org/10.1134/S102485602001011X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102485602001011X

Keywords:

Navigation