Skip to main content
Log in

Methods for the Synthesis of Phthalic Acid Dichlorides

  • CATALYSIS IN CHEMICAL AND PETROCHEMICAL INDUSTRY
  • Published:
Catalysis in Industry Aims and scope Submit manuscript

Abstract

Isophthalic and terephthalic acid chlorides (also known as isophthaloyl and terephthaloyl chlorides) are without doubt strategically important compounds. One area in which they are used is the synthesis of aramid fibers employed in the production of dual-purpose functional and construction materials. These include Terlon®, SVM®, Armos®, Fenilon®, Togilen®, and Rusar®. Special requirements for the quality of target acid dichlorides and raw materials used in their synthesis often determine how these compounds are obtained. Different methods for the synthesis of iso- and terephthaloyl chlorides (including catalytic syntheses), in which different initial materials are used, are considered below. The main methods for the analysis of the above compounds are described in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.

Similar content being viewed by others

REFERENCES

  1. Aly, K.I., Moustafa, A.H., Ahmed, E.K., Abd El-Lateef, H.M., Mohamed, M.G., and Mohamed, S.M., Chin. J. Polym. Sci., 2018, vol. 36, no. 7, pp. 835–847. https://doi.org/10.1007/s10118-018-2101-3

    Article  CAS  Google Scholar 

  2. Racané, L., Pavelić, S.K., Nhili, R., Depauw, S., Paul-Constant, C., Ratkaj, I., David-Cordonnier, M.-H., Pavelić, K., Tralić-Kulenović, V., and Karminski-Zamola, G., Eur. J. Med. Chem., 2013, vol. 63, pp. 882–891. https://doi.org/10.1016/j.ejmech.2013.02.026

    Article  CAS  PubMed  Google Scholar 

  3. Fakhar, I., Hussien, N.J., Sapari, S., Bloh, A.H., Yusoff, S.F.M., Hasbullah, S.A., Yamin, B.M., Muta-lib, S.A., Shihab, M.S., and Yousif, E., J. Mol. Struct., 2018, vol. 1159, pp. 96–102. https://doi.org/10.1016/j.molstruc.2018.01.032

  4. Shimizu, M., Shigitani, R., Kinoshita, T., and Sakaguchi, H., Chem.—Asian J., 2019, vol. 14, no. 10, pp. 1792–1800. https://doi.org/10.1002/asia.201801619

    Article  CAS  PubMed  Google Scholar 

  5. Morsi, S.M.M., Mohamed, H.A., and El-Sabbagh, S.H., Mater. Chem. Phys., 2019, vol. 224, pp. 206–216. https://doi.org/10.1016/j.matchemphys.2018.12.017

    Article  CAS  Google Scholar 

  6. Fakhar, I., Yamin, B.M., and Hasbullah, S.A., Chem. Cent. J., 2017, vol. 11, p. 76. https://bmcchem.biomedcentral.com/track/pdf/10.1186/s13065-017-0304-2. Cited January 6, 2020.

  7. Ravi, S. and Ahn, W.S., Microporous Mesoporous Mater., 2018, vol. 271, pp. 59–67. https://doi.org/10.1016/j.micromeso.2018.05.038

    Article  CAS  Google Scholar 

  8. Beristain, M.F., Ortega, A., Gomez-Sosa, G., Ogawa, T., Halim, F., Walser, A., and Dorsinville, R., Des. Monomers Polym., 2016, vol. 19, no. 4, pp. 340–346. https://doi.org/10.1080/15685551.2016.1152544

    Article  CAS  Google Scholar 

  9. Kawahara, Y., Ichiura, H., and Ohtani, Y., J. Appl. Polym. Sci., 2017, vol. 134, no. 9. https://doi.org/10.1002/app.44530

  10. Bogdal, D., Galica, M., Bartus, G., Wolinski, J., and Wronski, S., Org. Process Res. Dev., 2010, vol. 14, no. 3, pp. 669–683. https://doi.org/10.1021/op100040x

    Article  CAS  Google Scholar 

  11. Awad, A. and Aljundi, I.H., Korean J. Chem. Eng., 2018, vol. 35, no. 8, pp. 1700–1709. https://doi.org/10.1007/s11814-018-0079-8

    Article  CAS  Google Scholar 

  12. Abdellah, M.H., Pérez-Manríquez, L., Puspasari, T., Scholes, C.A., Kentish, S.E., and Peinemann, K.-V., J. Membr. Sci., 2018, vol. 567, pp. 139–145. https://doi.org/10.1016/j.memsci.2018.09.042

    Article  CAS  Google Scholar 

  13. Pérez-Manríquez, L., Neelakanda, P., and Peinemann, K.-V., J. Membr. Sci., 2018, vol. 554, pp. 1–5. https://doi.org/10.1016/j.memsci.2018.02.055

    Article  CAS  Google Scholar 

  14. Mera, H. and Takata, T., in Ullmann’s Encyclopedia of Industrial Chemistry, Weinheim: Wiley-VCH, 2000, vol. 1, pp. 131–139. https://doi.org/10.1002/14356007.a13_001

  15. Quintanilla, J., Polym. Eng. Sci., 1999, vo. 39, no. 3, pp. 559–585. https://doi.org/10.1002/pen.11446

    Article  CAS  Google Scholar 

  16. Yousif, E. and Haddad, R., SpringerPlus, 2013, vol. 2, no. 1, p. 398. https://doi.org/10.1186/2193-1801-2-398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Akdag, A., Kocer, H.B., Worley, S.D., Broughton, R.M., Webb, T.R., and Bray, T.H., J. Phys. Chem. B, 2007, vol. 111, no. 20, pp. 5581–5586. https://doi.org/10.1021/jp070586c

    Article  CAS  PubMed  Google Scholar 

  18. Perepelkin, K.E., Machalaba, N.N., and Kvara-tskheliya, V.A., Fibre Chem., 2001, vol. 33, no. 2, pp. 105–114. https://doi.org/10.1023/A:1019256718605

    Article  CAS  Google Scholar 

  19. Machalaba, N.N. and Perepelkin K.E., J. Ind. Text., 2002, vol. 31, no. 3, pp. 189–204. https://journals.sagepub.com/doi/pdf/10.1101/152808302026484. Cited January 6, 2020.

  20. Matsuda, H., Asakura, T., and Nakagawa, Y., Macromolecules, 2003, vol. 36, no. 16, pp. 6160–6165. https://doi.org/10.1021/ma034670b

    Article  CAS  Google Scholar 

  21. Jassal, M. and Ghosh, S., Indian J. Fibre Text. Res., 2002, vol. 27, no. 3, pp. 290–306. http://nopr.niscair.res.in/handle/123456789/22857.

    CAS  Google Scholar 

  22. Breda, E.J., Anal. Chem., 1958, vol. 30, no. 12, pp. 2020–2022. https://doi.org/10.1021/ac60144a045

    Article  CAS  Google Scholar 

  23. Munson, J.W., J. Pharm. Sci., 1974, vol. 63, no. 2, pp. 252–257. https://doi.org/10.1002/jps.2600630216

    Article  CAS  PubMed  Google Scholar 

  24. Smirnov, P.V., Podol’skaya, T.I., Kvasha, N.M., Poponova, R. V., Bogomolov, V.I., and Kuz’min, N.I., Fibre Chem., 1989, vol. 20, no. 5, pp. 354–358, https://doi.org/10.1007/BF00545408

    Article  Google Scholar 

  25. TU (Technical Specifications) 6-01-1146-88: Terephthaloyl Chloride Flakes, 1989.

  26. TU (Technical Specifications) 6-01-809-73: Isophthaloyl Chloride, 1973.

  27. Berti, W.R., Wolstenholme, B.W., Kozlowski, J.J., Sobocinski, R.L., and Freerksen, R.W., Environ. Sci. Technol., 2006, vol. 40, no. 20, pp. 6330–6335. https://doi.org/10.1021/es060954a

    Article  CAS  PubMed  Google Scholar 

  28. Hosangadi, B.D. and Dave, R.H., Tetrahedron Lett., 1996, vol. 37, no. 35, pp. 6375–6378. https://doi.org/10.1016/0040-4039(96)01351-2

    Article  CAS  Google Scholar 

  29. Sun, H., Yang, Y., Li, H., Zhang, J., and Sun, N., J. Agric. Food Chem., 2012, vol. 60, no. 22, pp. 5532–5539. https://doi.org/10.1021/jf3009603

    Article  CAS  PubMed  Google Scholar 

  30. Wu, J.C.G., J. Environ. Sci. Health, Part A:Environ. Sci. Eng. Toxicol., 1991, vol. 26, no. 8, pp. 1363–1385. https://doi.org/10.1080/10934529109375703

    Article  Google Scholar 

  31. Whitnack, G.C. and St. Clair Gantz, E., Anal. Chem., 1953, vol. 25, no. 4, pp. 553–556. https://doi.org/10.1021/ac60076a005

    Article  CAS  Google Scholar 

  32. Alpers, T., Muesmann, T.W.T., Temme, O., and Christoffers, J., Eur. J. Org. Chem., 2017, vol. 2017, no. 3, pp. 609–617. https://doi.org/10.1002/ejoc.201601298

    Article  CAS  Google Scholar 

  33. McMaster, L. and Ahmann, F.F., J. Am. Chem. Soc., 1928, vol. 50, no. 1, pp. 145–149. https://doi.org/10.1021/ja01388a018

    Article  CAS  Google Scholar 

  34. US Patent 6770783, 2004.

  35. Ruggli, P. and Gassenmeier, E., Helv. Chim. Acta, 1939, vol. 22, no. 1, pp. 496–511. https://doi.org/10.1002/hlca.19390220162

    Article  CAS  Google Scholar 

  36. DE Patent 642519, 1937.

  37. Rose, N.C., J. Chem. Educ., 1967, vol. 44, no. 5, p. 283. https://doi.org/10.1021/ed044p283

    Article  CAS  Google Scholar 

  38. Kim, K.-S., Kim, J.-H., and Seo, G., Chem. Commun., 2003, vol. 3, no. 3, pp. 372–373. https://doi.org/10.1039/B210258G

    Article  Google Scholar 

  39. Kim, H.-J., Moon, D., Lah, M.S., and Hong, J.-I., Tetrahedron Lett., 2003, vol. 44, no. 9, pp. 1887–1890. https://doi.org/10.1016/S0040-4039(03)00073-X

    Article  CAS  Google Scholar 

  40. Trifonov, A.L., Levin, V.V., Struchkova, M.I., and Dilman, A.D., Org. Lett., 2017, vol. 19, no. 19, pp. 5304–5307. https://doi.org/10.1021/acs.orglett.7b02601

    Article  CAS  PubMed  Google Scholar 

  41. US Patent 3734959, 1973.

  42. US Patent 3449416, 1969.

  43. US Patent 3950414, 1976.

  44. US Patent 4528146, 1985.

  45. Green, M. and Thorp, D.M., J. Chem. Soc. B, 1967, pp. 1067–1068. https://doi.org/10.1039/J29670001067

  46. Vilsmeier, A. and Haack, A., Ber. Dtsch. Chem. Ges., 1927, vol. 60, no. 1, pp. 119–122. https://doi.org/10.1002/cber.19270600118

    Article  Google Scholar 

  47. Arrieta, A., Aizpurua, J.M., and Palomo, C., Tetrahedron Lett., 1984, vol. 25, no. 31, pp. 3365–3368. https://doi.org/10.1016/S0040-4039(01)81386-1

    Article  CAS  Google Scholar 

  48. Li, J.-J., in Name Reactions, Berlin, Heidelberg: Springer, 2006, p. 605. https://doi.org/10.1007/3-540-30031-7_273

  49. GB Patent 1368973, 1974.

  50. Quesnel, J.S. and Arndtsen, B.A., J. Am. Chem. Soc., 2013, vol. 135, no. 45, pp. 16841–16844. https://doi.org/10.1021/ja4098093

    Article  CAS  PubMed  Google Scholar 

  51. Fabri, J., Graeser, U., and Simo, T.A., in Ullmann’s Encyclopedia of Industrial Chemistry, Weinheim: Wiley-VCH, 2000, vol. 39, pp. 643–663. https://doi.org/10.1002/14356007.a28_433

  52. Yang, Y., Bai, P., and Guo, X., Ind. Eng. Chem. Res., 2017, vol. 56, no. 50, pp. 14725–14753. https://doi.org/10.1021/acs.iecr.7b03127

    Article  CAS  Google Scholar 

  53. Sheehan, R.J., in Ullmann’s Encyclopedia of Industrial Chemistry, Weinheim: Wiley-VCH, 2011, vol. 36, pp. 17–28. https://doi.org/10.1002/14356007.a26_193.pub2

  54. Adamian, V.A. and Gong, W.H., in Liquid Phase Aerobic Oxidation Catalysis: Industrial Applications and Academic Perspectives, Alsters, P.L. and Stahl, Sh.S., Eds., Weinheim: Wiley-VCH, 2016, ch. 4, pp. 41–66. https://doi.org/10.1002/9783527690121.ch4

  55. Cotarca, L. and Eckert, H., Phosgenations—A Handbook, 2005, ch. 4.3.6–4.5.2, pp. 325–431. https://doi.org/10.1002/3527602623.ch4d

  56. US Patent 4129594, 1978.

  57. US Patent 4308216, 1981.

  58. US Patent 4307039, 1981.

  59. US Patent 4393009, 1983.

  60. Hauser, C.F. and Theiling, L.F., J. Org. Chem., 1974, vol. 39, no. 8, pp. 1134–1136. https://doi.org/10.1021/jo00922a026

    Article  CAS  Google Scholar 

  61. Babad, H. and Zeiler, A.G., Chem. Rev., 1973, vol. 73, no. 1, pp. 75–91. https://doi.org/10.1021/cr60281a005

    Article  CAS  Google Scholar 

  62. Beltrame, P. and Carrà, S., Tetrahedron Lett., 1965, vol. 6, no. 44, pp. 3909–3915. https://doi.org/10.1016/S0040-4039(01)89117-6

    Article  Google Scholar 

  63. Beltrame, P., Carrà, S., and Mori, S., J. Phys. Chem., 1966, vol. 70, no. 4, pp. 1150–1158. https://doi.org/10.1021/j100876a030

    Article  CAS  Google Scholar 

  64. Hill, M.E., J. Org. Chem., 1960, vol. 25, no. 7, pp. 1115–1118. https://doi.org/10.1021/jo01077a012

    Article  CAS  Google Scholar 

  65. CN Patent 104230704, 2014.

  66. Uspenskaya, N.N., Motsarev, G.V. and Korosteleva, V.M., Khim. Prom-st’, 1974, no. 2, pp. 32–33.

  67. Malichenko, B.F., Zh. Prikl. Khim., 1967, vol. 6, pp. 1385–1386.

    Google Scholar 

  68. Gillespie, R.J. and Robinson, E.A., J. Am. Chem. Soc., 1965, vol. 87, no. 11, pp. 2428–2434. https://doi.org/10.1021/ja01089a022

    Article  CAS  Google Scholar 

  69. US Patent 3835187, 1974.

  70. Uspenskaya, N.N., Maksicheva, A.I., and Motsarev, G.V., Zh. Org. Khim., 1970, vol. 6, no. 5, pp. 1027–1032.

    CAS  Google Scholar 

  71. US Patent 3681451, 1972.

  72. Rondestvedt, C.S., J. Org. Chem., 1976, vol. 41, no. 22, pp. 3577–3579. https://doi.org/10.1021/jo00884a019

    Article  CAS  Google Scholar 

  73. Rondestvedt, C.S., J. Org. Chem., 1976, vol. 41, no. 22, pp. 3569–3574. https://doi.org/10.1021/jo00884a017

    Article  CAS  Google Scholar 

  74. US Patent 2856425, 1958.

  75. Schreyer, R.C., J. Am. Chem. Soc., 1958, vol. 80, no. 13, pp. 3483–3484. https://doi.org/10.1021/ja01546a076

    Article  CAS  Google Scholar 

  76. US Patent 3668247, 1972.

  77. US Patent 3681454, 1972.

  78. Rondestvedt, C.S., J. Org. Chem., 1976, vol. 41, no. 22, pp. 3574–3577. https://doi.org/10.1021/jo00884a018

    Article  CAS  Google Scholar 

  79. Nakano, T., Ohkawa, K., Matsumoto, H., and Nagai, Y., J. Chem. Soc., Chem. Commun., 1977, no. 22, pp. 808–809. https://doi.org/10.1039/c3977000808b

Download references

Funding

This work was performed as part of a State Task for the Boreskov Institute of Catalysis, project no. ААААА17-117041710081-1.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. Yu. Yushchenko, E. G. Zhizhina or Z. P. Pai.

Additional information

Translated by A. Kukharuk

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yushchenko, D.Y., Zhizhina, E.G. & Pai, Z.P. Methods for the Synthesis of Phthalic Acid Dichlorides. Catal. Ind. 12, 29–38 (2020). https://doi.org/10.1134/S2070050420010110

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070050420010110

Keywords:

Navigation