Skip to main content
Log in

Ni/MgO Catalysts on Structured Metal Supports for the Air Conversion of Low Alkanes into Synthesis Gas

  • CATALYSIS IN CHEMICAL AND PETROCHEMICAL INDUSTRY
  • Published:
Catalysis in Industry Aims and scope Submit manuscript

Abstract

Heat-resistant, heat-conducting, and selective catalysts based on nickel highly porous foam-cellular material (HPFCM) and a mesh support are developed for the air conversion (partial oxidation) of low alkanes into additives that initiate combustion for fuel supplied to an engine as synthesis gas. The catalysts are developed in several stages: preparing a support based on nickel HPFCM (amount of Ni, 99.95%; PPI = 40) or an FeCrAl mesh; creating the support surface; forming structured blocks; the heat treatment of samples; applying an active component via the repeated co-impregnation of magnesium and nickel acetates; and stepwise heat treatment. NiO-MgO/(HPFCM or FeCrAl) catalysts tested in the air conversion reactions of propane, propane-butane, and natural gas, and in tri-reforming are prepared using this technique. The catalysts exhibit conversion of 90–96% over 80–100 h in all experiments at hourly space velocities of 32 000–71 000 h−1 and coefficients of air excess of 0.31–0.43 with no formation of coke. A two-phase two-temperature mathematical model of the air conversion of liquefied petroleum gases (LPGs) that is in good agreement with experimental data on the temperatures of the catalyst and flow, and on the composition of the gas mixture at the output, is developed for numerical analysis of the results. Results from calculations for a generator of the air conversion of LPGs at a thermal power of 100 kW are presented as an example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Kirillov, V.A., Kuzin, N.A., Kireenkov, V.V., Amosov, Yu.I., Burtsev, V.A., Emel’yanov, V.K., Sobyanin, V.A., and Parmon, V.N., Theor. Found. Chem. Eng., 2011, vol. 45, no. 2, pp. 127–140. https://doi.org/10.1134/S0040579511220015

    Article  CAS  Google Scholar 

  2. Livio, D., Donazzi, A., Beretta, A., Groppi, G., and Forzatti, P., Ind. Eng. Chem. Res., 2012, vol. 51, no. 22, pp. 7573–7583. https://doi.org/10.1021/ie202098q

    Article  CAS  Google Scholar 

  3. Donazzi, A., Livio, D., Diehm, C., Beretta, A., Groppi, G., and Forzatti, P., Appl. Catal., A, 2014, vol. 469, pp. 52–64. https://doi.org/10.1016/j.apcata.2013.09.054

  4. Pagani, D., Livio, D., Donazzi, A., Beretta, A., Groppi, G., Maestri, M., and Tronconti, E., Catal. Today, 2012, vol. 197, no. 1, pp. 265–280. https://doi.org/10.1016/j.cattod.2012.09.004

    Article  CAS  Google Scholar 

  5. Navarro Yerga, R.M., Álvarez-Galván, M.C., Mota, N., de la Mano, J.A.V., Al-Zahrani, S.M., and Fierro, J.L.G., ChemCatChem, 2011, vol. 3, no. 3, pp. 440–457. https://doi.org/10.1002/cctc.201000315

    Article  CAS  Google Scholar 

  6. Karakaya, C., Karadeniz, H., Maier, L., and Deutschmann, O., ChemCatChem, 2017, vol. 9, no. 4, pp. 685–695. https://doi.org/10.1002/cctc.201601237

    Article  CAS  Google Scholar 

  7. Peymani, M., Alavi, S.M., and Rezaei, M., Int. J. Hydrogen Energy, 2016, vol. 41, no. 42, pp. 19057–19069. https://doi.org/10.1016/j.ijhydene.2016.07.072

    Article  CAS  Google Scholar 

  8. Mosayebi, A. and Abedini, R., J. Ind. Eng. Chem., 2014, vol. 20, no. 4, pp. 1542–1548. https://doi.org/10.1016/j.jiec.2013.07.044

    Article  CAS  Google Scholar 

  9. Malaibari, Z.O., Amin, A., Croiset, E., and Epling, W., Int. J. Hydrogen Energy, 2014, vol. 39, no. 19, pp. 10061–10073. https://doi.org/10.1016/j.ijhydene.2014.03.169

    Article  CAS  Google Scholar 

  10. Usachev, N.Ya., Kharitonov, V.V., Belanova, E.P., Starostina, T.S., and Krukovskii, I.M., Ros. Khim. Zh., 2008, vol. 52, no. 4, pp. 22–31.

  11. Rostrup-Nielsen, J.R., in Catalysis, Andersen, J.R. and Boudart, M., Eds., Berlin, Heidelberg: Springer, 1984, vol. 5, ch. 1, pp. 1–117. https://doi.org/10.1007/978-3-642-93247-2_1

  12. Sinev, M.Yu., Korchak, V.N., and Krylov, O.V., Russ. Chem. Rev., 1989, vol. 58, no. 1, pp. 22–34. https://doi.org/10.1070/RC1989v058n01ABEH003423

    Article  Google Scholar 

  13. Campbell, K.D. and Lunsford, J.H., J. Phys. Chem., 1988, vol. 92, no. 20, pp. 5792–5796. https://doi.org/10.1021/j100331a049

    Article  CAS  Google Scholar 

  14. Mims, C.A., Hall, R.B., Rose, K.D., and Myers, G.R., Catal. Lett., 1989, vol. 2, no. 6, pp. 361–368. https://doi.org/10.1007/BF00768178

    Article  CAS  Google Scholar 

  15. Arutyunov, V.S., Okislitel’naya konversiya prirodnogo gaza (Oxidative Conversion of Natural Gas), Moscow: KRASAND, 2011.

  16. ECAT Company Official Website. http://ekokataliz.ru/ penomaterialyi/. Cited January 9, 2020.

  17. Muley, A., Kiser, C., Sundén, B., and Shah, R.K., Heat Transfer Eng., 2012, vol. 33, no. 1, pp. 42–51. https://doi.org/10.1080/01457632.2011.584817

    Article  CAS  Google Scholar 

  18. GOST (State Standard) 12766.3-90: Precision Gauged Alloys of High Electric Resistance. Specifications, 1990.

  19. Samoilov, A.V., Kirillov, V.A., Shigarov, A.B., Brayko, A.S., Potemkin, D.I., Shoinkhorova, T.B., Snytnikov, P.V., Uskov, S.I., Pechenkin, A.A., Belyaev, V.D., and Sobyanin, V.A., Catal. Ind., 2018, vol. 10, no. 4, pp. 321–327. https://doi.org/10.1134/S207005041804013X

    Article  Google Scholar 

  20. Shigarov, A.B., Kirillov, V.A., Kuzin, N.A., Kireenkov, V.V., and Braiko, A.S., Theor. Found. Chem. Eng., 2018, vol. 52, no. 3, pp. 212–221. https://doi.org/10.1134/S0040579518020161

    Article  CAS  Google Scholar 

  21. Shigarov, A.B., Kirillov, V.A., Kuzin, N.A., Kireenkov, V.V., and Braiko, A.S., Theor. Found. Chem. Eng., 2018, vol. 52, no. 3, pp. 349–359. https://doi.org/10.1134/S0040579518030144

    Article  CAS  Google Scholar 

  22. Brayko, A.S., Shigarov, A.B., Kirillov, V.A., Kireenkov, V.V., Kuzin, N.A., Sobyanin, V.A., Snytnikov, P.V., and Kharton, V.V., Mater. Lett., 2019, vol. 236, pp. 264–266. https://doi.org/10.1016/j.matlet.2018.09.175

    Article  CAS  Google Scholar 

  23. Zhorov, Yu.M., Termodinamika khimicheskikh protsessov. Neftekhimicheskii sintez, pererabotka nefti, uglya i prirodnogo gaza (Thermodynamics of Chemical Processes. Petrochemical Synthesis, Refining of Oil, Coal, and Natural Gas), Moscow: Khimiya, 1985.

  24. Jiang, H., Li, H., and Zhang, Y., J. Fuel Chem. Technol., 2007, vol. 35, no. 1, pp. 72–78. https://doi.org/10.1016/S1872-5813(07)60012-7

    Article  CAS  Google Scholar 

  25. Kirillov, V.A., Shigarov, A.B., Kuzin, N.A., Kireenkov, V.V., Amosov, Yu.I., Samoilov, A.V., and Burtsev, V.A., Theor. Found. Chem. Eng., 2013, vol. 47, no. 5, pp. 524–537. https://doi.org/10.1134/S0040579513050187

    Article  CAS  Google Scholar 

  26. Rostrup-Nielsen, J.R., J. Catal., 1973, vol. 31, no. 2, pp. 173–199. https://doi.org/10.1016/0021-9517(73)90326-6

    Article  CAS  Google Scholar 

  27. Spravochnik azotchika (Nitrogen Engineer’s Handbook), Mel’nikov, E.Ya., Ed., Moscow: Khimiya, 1986.

  28. Groppi, G., Giani, L., and Tronconi, E., Ind. Eng. Chem. Res., 2007, vol. 46, no. 12, pp. 3955–3958. https://doi.org/10.1021/ie061330g

    Article  CAS  Google Scholar 

  29. Reid, R.C., Prausnitz, J.M., and Sherwood, T.K., The Properties of Gases and Liquids, New York: McGraw-Hill, 1977.

    Google Scholar 

Download references

Funding

This work was performed as a part of a the budget project for the Boreskov Institute of Catalysis, project no. 0303-2017-0011.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. A. Kirillov, A. B. Shigarov, V. V. Kireenkov, A. S. Brayko or N. V. Burtsev.

Additional information

Translated by A. Tulyabaev

Appendices

APPENDIX A

Сg—mass heat capacity of a gas mixture, J/(kg K)

C—molar density of a mixture at a flow temperature, mol/m3

deq—equivalent diameter of transport channels in a catalytic block, m

\({{D}_{i}}\)—binary diffusion coefficeint of a gas component in nitrogen, m2/s

\(G\)—mixture mass velocity , kg/(m2 s)

\(k_{{{\text{OX}}}}^{{}}\)—propane oxidation reaction constant, mol(\({{{\text{C}}}_{{\text{3}}}}{{{\text{H}}}_{{\text{8}}}}\))/(m3 s atm)

\(k_{{{\text{RSH}}}}^{{}}\)—backwards CO steam reforming reaction constant, mol(СО2)/(m3 s atm)

\(k_{{{\text{SR}}}}^{{}}\), \(k_{{{\text{SR}}}}^{{\text{0}}}\)—reaction constant and pre-exponential factor, respectively, for the steam reforming of propane, mol(\({{{\text{C}}}_{{\text{3}}}}{{{\text{H}}}_{{\text{8}}}}\))/(m3 s atm)

\(K_{{{\text{MET}}}}^{{}}\), \(K_{{{\text{RSH}}}}^{{}}\)—thermodynamic equilibrium constants for the CO methanation and backward CO steam reforming reactions, respectively, atm−2

L—length of a catalytic block, m

mi—molar mass of a gas mixture component, kg/mol

\({{N}_{i}}\)—molar flow of the ith mixture component, from the flow to the catalytically active walls of block transport channels, mol/(m2 s)

\({{Q}_{{{\text{OX}}}}}{\text{,}}\;{{Q}_{{{\text{SR}}}}}{\text{,}}\;{{Q}_{{{\text{MET}}}}}{\text{,}}\;{\kern 1pt} {{Q}_{{{\text{RSH}}}}}\)—specific heats of reaction stages, J/mol

\({{P}_{i}}\)—partial pressure of the ith mixture component in a stream, atm

\(P_{i}^{{\text{s}}}\)—partial pressure of the ith mixture component on the catalytically active walls of a block’s transport channels, atm

SV—specific surface area for the walls of transport channels in a catalytic block, m−1

TS—catalyst temperature, °C or K

Tg—gas temperature, °C or K

T1—temperature of the gas mixture at the inlet to the layer catalyst, °CT2—catalyst temperature in the inlet section catalyst bed, °CT3—catalyst bed outlet temperature, °C

\({{{\omega }}_{{{\text{OX}}}}}\), \({{{\omega }}_{{{\text{SR}}}}}\), \({{{\omega }}_{{{\text{MET}}}}}\), \({{{\omega }}_{{{\text{RSH}}}}}\)—reaction stage rates per unit block volume, mol(\({{{\text{C}}}_{{\text{3}}}}{{{\text{H}}}_{{\text{8}}}}\), СО or СО2)/(m3 s)

Х3Н8)—propane conversion, %

\(x_{i}^{{}}\)—dimensionless mass fraction of a gas mixture component in a flow

\(y_{i}^{{}}\)—dimensionless molar fraction of a gas mixture component in a flow

\(y_{i}^{{\text{S}}}\)—dimensionless molar fraction of a mixture component near the catalytically active walls of block transport channels

z—coordinate along the block length, m

\(\alpha = \frac{{{{{\text{O}}}_{{\text{2}}}}}}{{{\text{5}}{{{\text{C}}}_{{\text{3}}}}{{{\text{H}}}_{{\text{8}}}}}}\)—dimensionless coefficient of air excess

\({{\beta }_{i}}\)—gas–solid mass transfer coefficient, m/s

\({{{\sigma }}_{{{\text{rad}}}}}\)—Boltzmann radiation constant, W/(m2 K4)

\(\gamma \)—gas–solid heat transfer coefficient, W/(m2 K)

\({{{\lambda }}_{{\text{g}}}}\)—gas mixture heat conductivity, W/(m K)

\({{{\lambda }}_{{\text{S}}}}\)—foam nickel heat conductivity, W/(m K)

\({{{\lambda }}_{{{\text{Ni}}}}}\)—nickel heat conductivity, W/(m K)

\({{{\mu }}_{{\text{g}}}}\)—gas mixture dynamic viscosity, kg/(s m)

\({{{\rho }}_{{\text{g}}}}\)—gas mixture density, kg/m3

\({{\varepsilon }_{0}}{\kern 1pt} \)—foam nickel porosity coefficient

\({{{\varepsilon }}_{{{\text{rad}}}}}{\kern 1pt} \)—degree of balckness for the catalytic block ends

Nu—Nusselt number

Pr—Prandtl number

Re—Reynolds number

Sh—Sherwood number

Sс—Schmidt number

APPENDIX B

in—Input to catalytic block

\(i = \left\{ {{{{\text{O}}}_{{\text{2}}}}{\text{,}}\,\,{\text{C}}{{{\text{H}}}_{{\text{4}}}}{\text{,}}\,\,{\text{C}}{{{\text{O}}}_{{\text{2}}}}{\text{,}}\,\,{{{\text{H}}}_{{\text{2}}}}{\text{O}}{\text{,}}\,\,{\text{CO}}{\text{,}}\,\,{{{\text{H}}}_{{\text{2}}}}} \right\}\)—Gas component numbers

g—Gas flow

OX—propane oxidation stage

SR—propane oxidation stage

МЕТ—methanation reaction stage

RSH—backward CO steam reforming stage

S—catalytic block channel wall

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirillov, V.A., Shigarov, A.B., Kuzin, N.A. et al. Ni/MgO Catalysts on Structured Metal Supports for the Air Conversion of Low Alkanes into Synthesis Gas. Catal. Ind. 12, 66–76 (2020). https://doi.org/10.1134/S2070050420010080

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070050420010080

Keywords:

Navigation