Skip to main content
Log in

Oligomerization of 1-Pentene on Zeolite Catalysts

  • CATALYSIS IN CHEMICAL AND PETROCHEMICAL INDUSTRY
  • Published:
Catalysis in Industry Aims and scope Submit manuscript

Abstract

The oligomerization of 1-pentene is an efficient process for producing environmentally friendly high-quality fuel components. The catalytic properties of FAU, OFF, MOR, BEA, MTW, and MFI zeolites in the H form are studied in the synthesis of pentene oligomers in an autoclave at 110–200°C. It is established that the high activity of H-Y and H-Beta(18) zeolites in the reaction of oligomerization, where the yield of oligomers reaches 97–100%, is determined by their wide-pore structure and high concentration of acid sites. The oligomers prepared on these catalysts are 30–73% dimers, 25–50% trimers, and 2–14% oligomers, with number n > 3 of monomer units. Narrow-pore zeolites (H-ZSM-5) or zeolites with one- and two-dimensional channel systems (H-OFF, H-MOR, and H-ZSM-12) are less active in the oligomerization of 1-pentene, with decenes as the main products of the reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Ipatieff, V.N., Ind. Eng. Chem., 1935, vol. 27, no. 9, pp. 1067–1069.

    Article  CAS  Google Scholar 

  2. Davis, M.E., AIChE J., 1991, vol. 37, no. 2, p. 310.

    Article  Google Scholar 

  3. Köhler, E., Schmidt, F., Wernicke, H.J., De Pontes, M., and Roberts, H.L., Hydrocarbon Technol. Int., 1995, pp. 37–40.

  4. Düker, A., Lichtscheidl, J., and Altwicker, C., Abstract of Papers, Proc. ERTC 14th Annual Meeting, Berlin, 2009.

  5. Cruz, V.J., Izquierdo, J.F., Cunill, F., Tejero, J., Iborra, M., and Fité, C., React. Funct. Polym., 2005, vol. 65, nos. 1–2, pp. 149–160.

  6. Kulkarni, A., Kumar, A., Goldman, A.S., and Celik, F.E., Catal. Commun., 2016, vol. 75, pp. 98–102.

    Article  CAS  Google Scholar 

  7. US Patent 4335009, 1982.

  8. Bellussi, G. and Pollesel, P., Stud. Surf. Sci. Catal., 2005, vol. 158, part B, pp. 1201–1212.

  9. Casagrande, M., Storaro, L., Lenarda, M., and Rossini, S., Catal. Commun., 2005, vol. 6, no. 8, pp. 568–572.

    Article  CAS  Google Scholar 

  10. Shah, N.F. and Sharma, M.M., React. Polym., 1993, vol. 19, pp. 181–190.

    Article  CAS  Google Scholar 

  11. Marchionna, M., Di Girolamo, M., and Patrini, R., Catal. Today, 2001, vol. 65, nos. 2–4, pp. 397–403.

  12. Cruz, V.J., Bringué, R., Cunill, F., Izquierdo, J.F., Tejero, J., Iborra, M., and Fité, C., J. Catal., 2006, vol. 238, no. 2, pp. 330–341.

    Article  CAS  Google Scholar 

  13. Cruz, V.J., Izquierdo, J.F., Cunill, F., Tejero, J., Iborra, M., Fité, C., and Bringué, R., React. Funct. Polym., 2007, vol. 67, no. 3, pp. 210–224.

    Article  CAS  Google Scholar 

  14. Catani, R., Mandreoli, M., Rossini, S., and Vaccari, A., Catal. Today, 2002, vol. 75, nos. 1–4, pp. 125–131.

  15. Schmidt, R., Welch, R.B., and Randolph, B.B., Energy Fuels, 2008, vol. 22, no. 2, pp. 1148–1155.

    Article  CAS  Google Scholar 

  16. Höchtl, M., Jentys, A., and Vinek, H., Appl. Catal., A, 2001, vol. 207, nos. 1–2, pp. 397–405.

  17. Föttinger, K., Kinger, G., and Vinek, H., Appl. Catal., A, 2003, vol. 249, no. 2, pp. 205–212.

  18. US Patent 9567267, 2017.

  19. Granollers, M., Izquierdo, J.F., Tejero, J., Iborra, M., Fité, C., Bringué, R., and Cunill, F., Ind. Eng. Chem. Res., 2010, vol. 49, no. 8, pp. 3561–3570.

    Article  CAS  Google Scholar 

  20. Corma, A., Martínez, C., and Doskocil, E., J. Catal., 2013, vol. 300, pp. 183–196.

    Article  CAS  Google Scholar 

  21. Bertrand-Drira, C., Cheng, X.-W., Cacciaguerra, T., Trens, P., Melinte, G., Ersen, O., Minoux, D., Finiels, A., Fajula, F., and Gerardin, C Microporous Mesoporous Mater., 2015, vol. 213, pp. 142–149.

    Article  CAS  Google Scholar 

  22. Díaz-Rey, M.R., Paris, C., Martínez-Franco, R., Moliner, M., Martínez, C., and Corma, A., ACS Catal., 2017, vol. 7, no. 9, pp. 6170–6178.

    Article  Google Scholar 

  23. Gorshunova, K.K., Travkina, O.S., Kustov, L.M., and Kutepov, B.I., Russ. J. Phys. Chem. A, 2016, vol. 90, no. 3, pp. 652–657.

    Article  CAS  Google Scholar 

  24. Gorshunova, K.K., Travkina, O.S., Kapustin, G.I., Kustov, L.M., Pavlov, M.L., and Kutepov, B.I., Russ. J. Phys. Chem. A, 2015, vol. 89, no. 5, pp. 846–851.

    Article  CAS  Google Scholar 

Download references

Funding

This work was performed within state task no. AAAA-A19-119022290006-2, “Zeolite Materials of Different Structural Types with High Degrees of Crystallinity and Hierarchical Porous Structures: A New Generation of Catalysts for the Synthesis of Petrochemical Products of Practical Importance.” and supported by the RF Presidential Grant for Young Scientists and Graduate Students, project no. SP-2137.2018.1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. G. Grigor’eva.

Additional information

Translated by O. Kadkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grigor’eva, N.G., Serebrennikov, D.V., Bubennov, S.V. et al. Oligomerization of 1-Pentene on Zeolite Catalysts. Catal. Ind. 12, 47–55 (2020). https://doi.org/10.1134/S2070050420010079

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070050420010079

Keywords:

Navigation