Skip to main content
Log in

Synthesis of Hydroxylamine Sulfate via NO Hydrogenation over Pt/Graphite Catalysts, Part 2: Effect of the Reaction Conditions and the Physicochemical State of a Catalyst on the Yield of Products

  • CATALYSIS IN CHEMICAL AND PETROCHEMICAL INDUSTRY
  • Published:
Catalysis in Industry Aims and scope Submit manuscript

Abstract

The selectivity toward products is studied for the industrially important process of NO hydrogenation in a H2SO4 solution as a function of process parameters: the hourly space velocity of the NO + H2 gas mixture through the reactor, the speed of stirring and the concentration of the Pt catalyst/graphite suspension, and the temperature. It is found that the first or zero order with respect to the catalyst can be observed for this process in the regime of external diffusion limitation for the gas reagents, depending on the concentration of the catalyst in the suspension, and the selectivity toward solid products (hydroxylamine sulfate (HAS) and ammonium sulfate) is greatest in the region of transition. It is shown that the selectivity towards HAS can be improved by functionalizing graphite surface with nitrogen-containing groups that modify the adsorption and catalytic properties of supported platinum nanoparticles. Some views are presented on specific features of the functioning of platinum catalysts in concentrated suspensions with a limited supply of the reaction gases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. US Patent 2628889, 1953.

  2. US Patent 3060133, 1962.

  3. US Patent 2823101, 1958.

  4. US Patent 3663166, 1971.

  5. US Patent 4477424, 1984.

  6. US Patent 5554353, 1996.

  7. US Patent 7037478, 2006.

  8. US Patent 4048291, 1977.

  9. US Patent 4889704, 1989.

  10. US Patent 4895711, 1990.

  11. US Patent 4992252, 1991.

  12. US Patent 5155081, 1992.

  13. US Patent 5120699, 1992.

  14. US Patent 5236685, 1993.

  15. US Patent 5560895, 1996.

  16. US Patent 5817592, 1998.

  17. US Patent 6083468, 2000.

  18. Tauszik, G.R., and Crocetta, P., Appl. Catal., 1985, vol. 17, no. 1, pp. 1–21.

    Article  CAS  Google Scholar 

  19. Van de Moesdijk, C.G.M., The catalytic reduction of nitrate and nitric oxide to hydroxylamine: kinetics and mechanism, PhD Thesis, Eindhoven: Technische Hogeschool,1979.

  20. Savodnik, N.N., Kul’kova, N.V., Dokholov, D.M., Lopatin, V.L., and Temkin, M.I., Kinet. Katal., 1972, vol. 13, no. 6, pp. 1520–1526

    CAS  Google Scholar 

  21. Polizzi, S., Benedetti, A., Fagherazzi, G., Goatin, C., Strozzi, R., Talamini, G., and Toniolo, L., J. Catal., 1987, vol. 106, no. 2, pp. 494–499.

    Article  CAS  Google Scholar 

  22. US Patent 3996165, 1976

  23. US Patent 5496789, 1996.

  24. Bobrovskaya, A.N., Simonov, P.A., Bukhtiyarov, A.V., Kvon, R.I., Rudina, N.A., Romanenko, A.V., and Khodorchenko, V.M., Catal. Ind., 2018, vol. 10, no. 4, pp. 279–287.

    Article  Google Scholar 

  25. RF Patent 2530001, 2014.

  26. RF Patent 2415707, 2011.

  27. Voropaev, I.N., Simonov, P.A., and Romanenko, A.V., Russ. J. Inorg. Chem., 2009, vol. 54, no. 10, pp. 1531–1536.

    Article  Google Scholar 

  28. Pels, J.R., Kapteijn, F., Moulijn, J.A., Zhu, Q., and Thomas, K.M., Carbon, 1995, vol. 33, no. 11, pp. 1641–1653.

    Article  CAS  Google Scholar 

  29. Burg, Ph., Fydrych, P., Cagniant, D., Nanse, G., Bimer, J., and Jankowska, A., Carbon, 2002, vol. 40, no. 9, pp. 1521–1531.

    Article  CAS  Google Scholar 

  30. Inagaki, M., Toyoda, M., Soneda, Y., and Morishita, T., Carbon, 2018, vol. 132, pp. 104–140.

    Article  CAS  Google Scholar 

  31. Analiticheskii kontrol’ proizvodstva v azotnoi promyshlennosti (Analytical Control of Nitrogen Industry Production), vol. 19: Analiz produktov tsekha gidrirovaniya benzola i stochnykh vod proizvodstva kaprolaktama (Analysis of Benzene Hydrogenation Workshop Products and Caprolactam Production Wastewater), Moscow: Khimiya, 1971.

  32. Paseca, I., Collect. Czech. Chem. Commun., 1981, vol. 46, no. 11, pp. 2669–2675.

    Article  Google Scholar 

  33. Lopatin, V.L., Kul’kova, N.V., and Temkin, M.I., Kinet. Katal., 1982, vol. 23, no. 4, pp. 863–867.

    CAS  Google Scholar 

  34. Paseca, I., React. Kinet. Catal. Lett., 1979, vol. 11, no. 1, pp. 91–95.

    Article  Google Scholar 

Download references

Funding

This work was performed as part of a State Task for the Boreskov Institute of Catalysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. N. Bobrovskaya, P. A. Simonov, R. I. Kvon, A. V. Bukhtiyarov or A. V. Romanenko.

Additional information

Translated by E. Glushachenkova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bobrovskaya, A.N., Simonov, P.A., Kvon, R.I. et al. Synthesis of Hydroxylamine Sulfate via NO Hydrogenation over Pt/Graphite Catalysts, Part 2: Effect of the Reaction Conditions and the Physicochemical State of a Catalyst on the Yield of Products. Catal. Ind. 12, 16–28 (2020). https://doi.org/10.1134/S2070050420010031

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070050420010031

Keywords:

Navigation