Skip to main content
Log in

Structural and Electronic Properties of Highly Dispersed Particles of the Active Components of Pd/Al2O3 Catalysts of Butadiene-1,3 Hydrogenation

  • CATALYSIS IN CHEMICAL AND PETROCHEMICAL INDUSTRY
  • Published:
Catalysis in Industry Aims and scope Submit manuscript

Abstract

The effect of the acidic characteristics of an alumina support on the properties of formed palladium particles is studied to improve the activity of catalysts for the hydrogenation of unsaturated hydrocarbons of the pyrogasoline fraction. High catalytic activity is characteristic of highly dispersed palladium particles, but the surfaces of palladium particles are blocked by unsaturated hydrocarbons, due to their electron deficiency. In this work, palladium/alumina catalysts with supports of different acidities due to chemical modification with various reagents are studied via NH3 temperature-programed desorption, transmission electron microscopy, and X-ray photoelectron spectroscopy. The samples are subjected to catalytic tests in the butadiene-1,3 hydrogenation reaction under laboratory conditions. The catalysts on supports with acidic modifiers display low butadiene-1,3 conversion and higher selectivity toward butene-1, relative to an unmodified sample. The catalysts on the supports treated with basic additives displayed high butadiene-1,3 conversion while retaining their selectivities toward butene-1 and butane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Moyes, R.B., Wells, P.B., Grant, J., and Salman, N.Y., Appl. Catal., A, 2002, vol. 229, nos. 1–2, pp. 251–259.

  2. Bhogeswararao, S. and Srinivas, D., J. Catal., 2015, vol. 327, pp. 65–77.

    Article  CAS  Google Scholar 

  3. Lonergan, W.W., Xing, X., Zheng, R., Qi, S., Huang, B., and Chen, J.G, Catal. Today, 2011, vol. 160, no. 1, pp. 61–69.

    Article  CAS  Google Scholar 

  4. Benkhaled, M., Descorme, C., Duprez, D., Morin, S., Thomazeau, C., and Uzio, D., Appl. Catal., A, 2008, vol. 346, nos. 1–2, pp. 36–43.

  5. Silvestre-Albero, J., Rupprechter, G., and Freund, H.-J., Chem. Commun., 2006, no. 1, pp. 80–82.

  6. Silvestre-Albero, J., Borasio, M., Rupprechter, G., and Freund, H.-J., Catal. Commun., 2007, vol. 8, no. 3, pp. 292–298.

    Article  CAS  Google Scholar 

  7. Derrien, M.L., Stud. Surf. Sci. Catal., 1986, vol. 27, pp. 613–666.

    Article  CAS  Google Scholar 

  8. Ouchaib, T., Massardier, J., and Renouprez, A., J. Catal., 1989, vol. 119, no. 2, pp. 517–520.

    Article  CAS  Google Scholar 

  9. Mittendorfer, F., Thomazeau, C., Raybaud, P., and Toulhoat, H., J. Phys. Chem. B, 2003, vol. 107, no. 44, pp. 12287–12295.

    Article  CAS  Google Scholar 

  10. Kang, J.H., Shin, E.W., Kim, W.J., Park, J.D., and Moon, S.H., J. Catal., 2002, vol. 208, no. 2, pp. 310–320.

    Article  CAS  Google Scholar 

  11. Khan, N.A., Shaikhutdinov, S., and Freund, H.-J., Catal. Lett., 2006, vol. 108, nos. 3–4, pp. 159–164.

  12. Stakheev, A.Yu. and Kustov, L.M., Appl. Catal., A, 1999, vol. 188, nos. 1–2, pp. 3–35.

  13. Hub, S., Hilaire, L., and Touroude, R., Appl. Catal., 1988, vol. 36, pp. 307–322.

    Article  CAS  Google Scholar 

  14. Boitiaux, J.P., Cosyns, J., and Robert, E., Appl. Catal., 1987, vol. 35, no. 2, pp. 193–209.

    Article  CAS  Google Scholar 

  15. Tardy, B., Noupa, C., Leclercq, C., Bertolini, J.C., Houreau, A., Treilleux, M., Faure, J.P., and Nihoul, G., J. Catal., 1991, vol. 129, no. 1, pp. 1–11.

    Article  CAS  Google Scholar 

  16. Valden, M., Lai, X., and Goodman, D.W., Science, 1998, vol. 281, no. 5383, pp. 1647–1650.

    Article  CAS  Google Scholar 

  17. Mohr, C. and Claus, P., Sci. Prog., 2001, vol. 84, no. 4, pp. 311–334.

    Article  CAS  Google Scholar 

  18. Zhang, Z., Zhu, Y., Asakura, H., Zhang, B., Zhang, J., Zhou, M., Han, Y., Tanaka, T., Wang, A., Zhang, T., and Yan, N., Nat. Comm., 2017, vol. 8. https://www. nature.com/articles/ncomms16100. Cited October 8, 2019.

  19. Berhault, G., Bisson, L., Thomazeau, C., Verdon, C., and Uzio, D., Appl. Catal., A, 2007, vol. 327, no. 1, pp. 32–43.

  20. Lucci, F.R., Liu, J., Marcinkowski, M.D., Yang, M., Allard, L.F., Flytzani-Stephanopoulos, M., and Sykes, E.C.H., Nat. Comm., 2015, vol. 6. https://www.nature.com/articles/ncomms9550. Cited October 8, 2019.

  21. Gaube, J. and Klein, H.-F., Appl. Catal., A, 2014, vol. 470, pp. 361–368.

  22. Guseva, L., Plastik, 2015, no. 3, pp. 16–20.

  23. Delage, M., Didillon, B., Huiban, Y., Lynch, J., and Uzio, D., Stud. Surf. Sci. Catal., 2000, vol. 130, pp. 1019–1024.

    Article  Google Scholar 

  24. Boretskaya, A.V., Il’yasov, I.R., Lamberov, A.A., and Laskin, A.I., Russ. J. Appl. Chem., 2017, vol. 90, no. 2, pp. 161–168.

    Article  CAS  Google Scholar 

  25. Yashnik, S.A., Kuznetsov, V.V., and Ismagilov, Z.R., Chin. J. Catal., 2018, vol. 39, no. 2, pp. 258–274.

    Article  CAS  Google Scholar 

  26. Dai, Q., Zhu, Q., Lou, Y., and Wang, X., J. Catal., 2018, vol. 357, pp. 29–40.

    Article  Google Scholar 

  27. Borisevich, Yu.P., Fomichev, Yu.V., and Levinter, M.E., Zh. Fiz. Khim., 1982, vol. 56, no. 5, pp. 1298–1299.

    CAS  Google Scholar 

  28. Paukshtis, E.A., Infrakrasnaya spektroskopiya v geterogennom kislotno-osnovnom katalize (Infrared Spectroscopy in Heterogeneous Acid-Base Catalysis), Novosibirsk: Nauka, 1992.

  29. Contescu, C., Contescu, A., Schramm, C., Sato, R., and Schwartz, J.A., J. Colloid Interface Sci., 1994, vol. 165, no. 1, pp. 66–71.

    Article  CAS  Google Scholar 

  30. Lamberov, A.A., Khalilov, I.F., Il’yasov, I.R., Bikmurzin, A.Sh., and Gerasimova, A.V., Vestn. Kazan. Tekhnol. Univ., 2011, no. 13, pp. 24–35.

  31. Saifullin, R.S., Fizikokhimiya neorganicheskikh poli-mernykh i kompozitsionnykh materialov (Physical Chemistry of Inorganic Polymeric and Composite Materials), Moscow: Khimiya, 1990.

  32. Chesnokov, V.V., Prosvirin, I.P., Zaitseva, N.A., Zaikovskii, V.I., and Molchanov, V.V., Kinet. Catal., 2002, vol. 43, no. 6, pp. 838–846.

    Article  CAS  Google Scholar 

  33. Miegge, P., Rousset, J.L., Tardy, B., Massardier, J., and Bertolini, J.C., J. Catal., 1994, vol. 149, no. 2, pp. 404–413.

    Article  CAS  Google Scholar 

  34. Narayanan, R. and El-Sayed, M.A., J. Am. Chem. Soc., 2004, vol. 126, no. 23, pp. 7194–7195.

    Article  CAS  Google Scholar 

  35. Silvestre-Albero, J., Rupprechter, G., and Freund, H.-J., J. Catal., 2005, vol. 235, no. 1, pp. 52–59.

    Article  CAS  Google Scholar 

  36. Bragin, O.V. and Liberman, A.L., Prevrashcheniya uglevodorodov na metallsoderzhashchikh katalizatorakh (Conversion of Hydrocarbons on Metal-Containing Catalysts), Moscow: Khimiya, 1981.

  37. Bursian, N.R., Tekhnologiya izomerizatsii parafinovykh uglevodorodov (Isomerization Technology for Paraffin Hydrocarbons), Leningrad: Khimiya, 1985.

Download references

Funding

This work was by supported by a subsidy granted to Kazan (Volga) Federal University to improve its competitiveness among the world’s leading scientific and educational centers.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. V. Boretskaya, I. R. Ilyasov or A. A. Lamberov.

Additional information

Translated by E. Glushachenkova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boretskaya, A.V., Ilyasov, I.R. & Lamberov, A.A. Structural and Electronic Properties of Highly Dispersed Particles of the Active Components of Pd/Al2O3 Catalysts of Butadiene-1,3 Hydrogenation. Catal. Ind. 11, 278–285 (2019). https://doi.org/10.1134/S2070050419040032

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070050419040032

Keywords:

Navigation