Skip to main content
Log in

Simulation of Body Motion in Viscous Incompressible Fluid

  • Published:
Numerical Analysis and Applications Aims and scope Submit manuscript

Abstract

The paper presents a description of a method for simulation of the motion of bodies in viscous incompressible fluid with the use of a technique of computation on overset grids (“chimera” technique). Equations describing the flow of viscous incompressible fluid are approximated by the finite volume method on an arbitrary unstructured grid. Their iterative solution is implemented using the algorithm SIMPLE. This paper describes the basic equations in the case of moving grid. The features of implementation of grid boundary conditions that are set in the course of construction of interpolation pattern are described. A method for overcoming numerical instability when a solid body model is used is demonstrated. The specificity of taking into account the forces of gravitation in the presence of multiphase media is described. The results of solving the problem of motion of cylinder in fluid, fall of sphere into fluid, and flooding of a ship's model are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kiris, C., Kwak, D., Rogers, S., and Chang I., Computational Approach for Probing the Flow through Artificial Heart Devices, J. Biomech. Eng., 1997, vol. 119, no. 4, pp. 452–460.

    Article  Google Scholar 

  2. Tahara, Y., Wilson, R., Carrica, P., and Stern, F., RANS Simulation of a Container Ship Using a Single-Phase Level-S et Method with Overset Grids and the Prognosis for Extension to a Self-Propulsion Simulator, J. Marine Sci. Technol., 2006, vol. 11, no. 4, pp. 209–228.

    Article  Google Scholar 

  3. Fast, P. and Shelley, M. J., A Moving Overset Grid Method for Interface Dynamics Applied to Non-Newtonian Hele-Show Flow, J. Comput. Phys., 2004, vol. 195, pp. 117–142.

    Article  MathSciNet  MATH  Google Scholar 

  4. Mazhukin, V. I., Samarskii, A. A., Kastelianos, O., and Shapranov, A. V., Dynamic Adaptation Method for Non-Stationary Problems with Large Gradients, Mat. Model., 1993, vol. 5, no. 4, pp. 32–56.

    MathSciNet  MATH  Google Scholar 

  5. Godunov, S.K., and Prokopov, G. P., The Use of Moving Meshes in Gas-Dynamical Computations, Comput. Math. Math. Phys., 1972, vol. 12, no. 2, pp. 182–195.

    Article  MATH  Google Scholar 

  6. Mittal, R. and Iaccarino, G., Immersed Boundary Methods, Ann. Rev. Fluid Mech., 2005, vol. 37, pp. 239–261.

    Article  MathSciNet  MATH  Google Scholar 

  7. Benek, J. A., Buning, P. G., and Steger, J. L., A 3D Chimera Grid Embedding Technique, Proc. 7th Comput. Phys. Conf., Cincinnati, OH, USA, AIAA J., 1985, pp. 322–331 (AIAA 85-1523); DOI:10.2514/6.1985-1523.

    Google Scholar 

  8. Abalakin, I. V., Zhdanova, N. S., and Kozubskaya, T. K., Implementation of the Method of Immersed Boundaries for Simulation of External Flow Problems on Unstructured Meshes, Mat. Model., 2015, vol. 27, no. 10, pp. 5–20.

    MATH  Google Scholar 

  9. Wang, Z.J. and Parthasarathy, V., A Fully Automated Chimera Methodology for Multiple Moving Body Problems, Int. J. Num. Meth. Fluids, 2000, vol. 33, no. 7, pp. 919–938.

    Article  MATH  Google Scholar 

  10. Lee, K. R., Park, J. H., and Kim, K. H., High-Order Interpolation Method for Overset Grid Based on Finite Volume Method, AIAA J., 2011, vol. 49, no. 7, pp. 1387–1398.

    Article  Google Scholar 

  11. Hahn, S., Iaccarino, G., Ananthan, S., and Baeder, D., Extension of CHIMPS for Unstructured Overset Simulation and Higher-Order Interpolation, Proc. 19th AIAA Computational Fluid Dynamics, Fluid Dynamics and Co-Located Conf., San Antonio, Texas, AIAA Paper, 2009, pp. 299–311 (AIAA 2009-3999); DOI: 10.2514/6.2009-3999.

    Google Scholar 

  12. Tang, H., Jones, S. C., and Sotiropoulos, F., An Overset Grid Method for 3D Unsteady Incompressible Flows, J. Comput. Phys., 2003, vol. 191, no. 2, pp. 567–600.

    Article  MATH  Google Scholar 

  13. Wang, Z.J. and Yang, H. Q., A Unified Conservative Zonal Interface Treatment for Arbitrarily Patched and Overlapped Grids, 32nd Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, AIAA Paper, 1994 (AIAA 94-0320); DOI:10.2514/6.1994-320.

    Google Scholar 

  14. Kozelkov, A. S., Shagaliev, R. M., Kurulin, V. V., Yalozo, A. V., and Lashkin, S. V., Investigation of Supercomputer Capabilities for the Scalable Numerical Simulation of Computational Fluid Dynamics Problems in Industrial Applications, Comput. Math. Math. Phys., 2016, vol. 56, no. 8, pp. 1506–1516.

    Article  MathSciNet  MATH  Google Scholar 

  15. Pogosyan, M. A., Savel'evskikh, E. P., Shagaliev, R. M., et al., Application of Supercomputer Technologies in the Russian Aviation Industry, in Mezhdunarodnaya entsiklopediya CALS-tekhnologii. Aviatsionno-kosmicheskoe mashinostroenie (International Encyclopedia of CALS Technologies. Aerospace Engineering), Bratukhina, A. G., Ed., Moscow: OAO NITS ASK, 2015, pp. 49–61.

    Google Scholar 

  16. Marco, A., Mancini, S., Miranda, S., Scognamiglio, R., and Vitiello, L., Experimental and Numerical Hydrodynamic Analysis of a Stepped Planing Hull, Appl. Ocean Res., 2017, vol. 64, pp. 135–154.

    Article  Google Scholar 

  17. Usachov, A. E., Mazo, A. B., Kalinin, E. I., et al., Improving the Efficiency of Numerical Modeling of Turbulent Separated Flows by Using Hybrid Grids with Structured Multi-Scale Blocks and Unstructured Inserts, Trudy MAI, 2018, no. 99.

    Google Scholar 

  18. Zhang, X., Computation of Viscous Incompressible Flow Using Pressure Correction Method on Unstructured Chimera Grid, Int. J. Comput. Fluid Dyn., 2006, vol. 20, no. 9, pp. 637–650.

    Article  MATH  Google Scholar 

  19. Deryugin, Yu. N., Sarazov, A. V., and Zhuchkov, R. N., Features of Construction of Calculation Technique on Chimera Grids for Unstructured Grids, Mat. Model., 2017, vol. 29, no. 2, pp. 106–118.

    MATH  Google Scholar 

  20. Ferziger, J.H. and Peric, M., Computational Method for Fluid Dynamics, New York: Springer-Verlag, 2002.

    Book  MATH  Google Scholar 

  21. Farhat, C., Geuzaine, Ph., and Grandmonty, C., The Discrete Geometric Conservation Law and the Nonlinear Stability of ALE Schemes for the Solution of Flow Problems on Moving Grids, J. Comput. Phys., 2001, vol. 174, pp. 669–694.

    Article  MathSciNet  MATH  Google Scholar 

  22. Borisov, A.V. and Mamaev, I. S., Dinamika tverdogo tela. Regulyarnaya i khaoticheskaya dinamika (Dynamics of Solid Body. Regular and Chaotic Dynamics), Izhevsk, 2001.

    Google Scholar 

  23. Kozelkov, A. S., Meleshkina, D. P., Kurkin, A. A., et al., Completely Implicit Method for Solving Navier—Stokes Equations for Calculating Multiphase Free-Surface Flows, Vych. Tekhnol., 2016, vol. 21, no. 5, pp. 54–76.

    MATH  Google Scholar 

  24. Efremov, V. R., Kozelkov, A. S., Kornev, A. V., Kurkin, A. A., Kurulin, V. V., Strelets, D. Y., and Tarasova, N. V., Method for Taking into Account Gravity in Free-Surface Flow Simulation, Comput. Math. Math. Phys., 2017, vol. 57, no. 10, pp. 1720–1733.

    Article  MathSciNet  MATH  Google Scholar 

  25. Volkov, K. N., Deryugin, Yu. N., Emel'yanov, V. N., et al., Metody uskoreniya gazodinamicheskikh rasche-tov na nestrukturirovannykh setkakh (Methods of Accelerating Gas-Dynamic Calculations on Unstructured Grids), Moscow: Fizmatlit, 2013.

    Google Scholar 

  26. Kozelkov, A. S., Kurulin, V. V., Tyatyushkina, E. S., Kurkin, A. A., Legchanov, M. A., and Tsibereva, Y. A., Investigation of the Application of RANS Turbulence Models to the Calculation of Nonisothermal Low-Prandtl-Number Flows, Fluid Dyn., 2015, vol. 50, no. 4, pp. 501–513.

    Article  MathSciNet  MATH  Google Scholar 

  27. Kozelkov, A. S., Kurkin, A. A., Krutyakova, O. L., Kurulin, V. V., and Tyatyushkina, E. S., Zonal RANS-LES Approach Based on an Algebraic Reynolds Stress Model, Fluid Dyn., 2015, vol. 50, no. 5, pp. 621–628.

    Article  MathSciNet  MATH  Google Scholar 

  28. Kozelkov, A. S., Kurkin, A. A., Pelinovsky, E. N., Kurulin, V. V., and Tyatyushkina, E. S., Numerical Modeling of the 2013 Meteorite Entry in Lake Chebarkul, Russia, Nat. Hazards Earth Syst. Sci., 2017, vol. 17, pp. 671–683.

    Article  Google Scholar 

  29. Kozelkov, A. S., Kurkin, A. A., Pelinovsky, E. N., et al. Landslide-Type Tsunami Modeling Based on the Navier—Stokes Equations, Sci. Tsunami Hazards, 2016, vol. 35, no. 3, pp. 106–144.

    Google Scholar 

  30. Betelin, V. B., Shagaliev, R. M., Aksenov, S. V., et al., Mathematical Simulation of Hydrogen—Oxygen Combustion in Rocket Engines Using LOGOS Code, Acta Astronautica, 2014, vol. 96, no. 1, pp. 53–64.

    Article  Google Scholar 

  31. Schlichting, H., Grenzschicht-Theorie, Karlsruhe: G. Braun, 1951.

    MATH  Google Scholar 

  32. Aristoff, J. M., Truscott, T. T., Techet, A. H., and Bush, J.W.M., The Water Entry of Decelerating Spheres, Phys. Fluids, 2010, vol. 22, iss. 3 (no. 032102); DOI:l0.1063/1.3309454.

  33. Zhang, A., Cao X., Ming, F., and Zhang, Z., Investigation on a Damaged Ship Model Sinking into Water Based on Three-Dimensional SPH Method, Appl. Ocean Res., 2013, vol. 42, pp. 24–31.

    Article  Google Scholar 

Download references

Funding

The work was performed under a state assignment in the field of scientific activity (project nos. 5.4568.2017/6.7 and 5.1246.2017/4.6) and supported by RFBR (project no. 16-01-00267), by the Council for Grants (under RF President) and State Aid of Leading Scientific Schools (grant NSh-2685.2018.5), and by the Grants Council (under RF President), grant no. MD-4874.2018.9.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. S. Kozelkov, V. R. Efremov, A. A. Kurkin, N. V. Tarasova, D. A. Utkin or E. S. Tyatyushkina.

Additional information

Russian Text © The Author(s), 2019, published in Sibirskii Zhurnal Vychislitel’noi Matematiki, 2019, Vol. 22, No. 3, pp. 259–276.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozelkov, A.S., Efremov, V.R., Kurkin, A.A. et al. Simulation of Body Motion in Viscous Incompressible Fluid. Numer. Analys. Appl. 12, 219–233 (2019). https://doi.org/10.1134/S1995423919030029

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995423919030029

Keywords

Navigation