Skip to main content
Log in

On the Cauchy Problem for the Iterated Generalized Two-axially Symmetric Equation of Hyperbolic Type

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

The Cauchy problem for an iterated generalized two-axially symmetric equation of hyperbolic type is investigated. Unlike traditional methods, the generalized Erdélyi–Kober operator of fractional order is applied to solve the problem. The application of this operator allows us to reduce the equations with the lowest term and with the singular Bessel operator acting in one of the variables to an equation without the Bessel operator acting on this variable and without the lowest term. The proposed approach makes it possible to construct an explicit formula for solving the formulated problem. These formulas express solutions of the Cauchy problem in terms of the sum of the initial functions under the action of powers of the Bessel operator. They allow us to directly see the character of the dependence of the solution on the initial functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives (Theory and Applications) (Gordon and Breach Sci., New York etc., 1993).

  2. A. V. Bitsadze, Selected Works (KBNTs RAN, Nalchik, 2012) [in Russian].

  3. V. I. Zhegalov, ‘‘Bounadary-value problem for equation of mixed type of higher order,’’ Dokl. Akad. Nauk SSSR 136, 274–276 (1962).

    Google Scholar 

  4. M. M. Smirnov, Model Equation of Mixed Type of Fourth Order (Leningrad Univ. Press, Leningrad, 1972) [in Russian].

    Google Scholar 

  5. M. M. Meredov, ‘‘Uniqueness of solution to boundary-value problems for equation of mixed type of the fourth order,’’ Izv. Akad. Nauk Turkmen. SSR, Ser.: Fiz.-Tekh., Khem. Geol. Nauk, №4, 11–16 (1967).

    Google Scholar 

  6. K. B. Sabitov, ‘‘Positivity of solutions to inhomogeneous mixed-type equations of higher orders,’’ Russ. Math. 60 (3), 56–62 (2016).

    Article  Google Scholar 

  7. A. Weinstein, ‘‘On a class of partial differential equation of even order,’’ Ann. Math. Pura Appl. 39, 245–254 (1955).

    Article  MathSciNet  Google Scholar 

  8. D. Krahn, ‘‘On the iterated wave equation,’’ Proc. Ser. A, Math. Sci., Amsterdam 60, 492–505 (1957).

  9. S. A. Galperin and V. E. Kondrashov, ‘‘The Cauchy problem for differential operators that decompose into wave multipliers,’’ Tr. Mosk. Mat. Ob-va 16, 109–136 (1967).

    Google Scholar 

  10. J. J. Bowman and J. D. Harris, ‘‘Green’s distributions and the Cauchy problem for the iterated Klein–Gordon operator,’’ J. Math. Phys., №3, 396–402 (1962).

    Article  MathSciNet  Google Scholar 

  11. J. Lukierski, ‘‘Lagrangian formalism for (\(2j+1\)) component higher spin theory,’’ Bull. Acad. Sci. Pol. SC, Ser. Mat. Phys. 14, 697–700 (1966).

    MATH  Google Scholar 

  12. D. W. Bresters, ‘‘On the Cauchy problem for iterated Klein–Gordon Operators and Wave Operators,’’ Indagation. Math. (Proc.) 72, 123–139 (1969).

    Article  MathSciNet  Google Scholar 

  13. A. Weinstein, ‘‘Generalized axially symmetric potential theory,’’ Bull. Am. Math. Soc. 59, 20–28 (1953).

    Article  MathSciNet  Google Scholar 

  14. A. Weinstein, ‘‘On a class of partial differential equation of even order,’’ Ann. Math. Pura Appl. 39, 245–254 (1955).

    Article  MathSciNet  Google Scholar 

  15. J. C. Burns, ‘‘The iterated equation of generalized axially symmetric potential theory II, General solutions of Weinstein’s type,’’ J. Austral. Math. Soc. 7, 277–289 (1967).

    Article  MathSciNet  Google Scholar 

  16. J. C. Burns, ‘‘The iterated equation of generalized axially symmetric potential theory V, Generalized Weinstein correspondence principle,’’ J. Austral. Math. Soc. 1, 129–141 (1970).

    Article  MathSciNet  Google Scholar 

  17. S. A. Aldashev, ‘‘About a Cauchy problem for operators breaking up to multipliers with singularities,’’ Differ. Uravn. 17, 247–255 (1981).

    Google Scholar 

  18. L. A. Ivanov, ‘‘The Cauchy problem for some operators with singularities,’’ Differ. Uravn. 18, 1020–1028 (1982).

    MathSciNet  MATH  Google Scholar 

  19. A. Weinstein, ‘‘On the wave equation and the equation of Euler–Poisson,’’ in Proceedings of the 5th Symposium on Applied Mathematics (AMS, 1954), pp. 137–147.

  20. R. Courant and D. Hilbert, Methods of Mathematical Physics (Wiley-Interscience, New York, 1962), Vol. 2.

    MATH  Google Scholar 

  21. J. S. Lowndes, ‘‘A generalization of the Erdélyi–Kober operators,’’ Proc. Edinburgh Math. Soc. 17, 139–148 (1970).

    Article  MathSciNet  Google Scholar 

  22. P. Heywood, ‘‘Improved boundedness conditions for Lowndes’ operators,’’ Proc. R. Soc. Edinburgh, Ser. A 73, 291–199 (1975).

  23. P. Heywood and P. G. Rooney, ‘‘On the boundedness of Lowndes’ operators,’’ J. London Math. Soc. 10, 241–248 (1975).

    Article  MathSciNet  Google Scholar 

  24. Sh. T. Karimov, ‘‘About some generalizations of the properties of the Erdélyi–Kober operator and their application,’’ Vestn. KRAUNC, Fiz.-Mat. Nauki 18 (2), 20–40 (2017).

    MATH  Google Scholar 

  25. Sh. T. Karimov, ‘‘On some generalizations of properties of the Lowndes operator and their applications to partial differential equations of high order,’’ Filomat 32, 873–883 (2018).

    Article  MathSciNet  Google Scholar 

  26. R. W. Carroll, Transmutation and Operator Differential Equations, Vol. 67 of North–Holland Mathematics Studies (North-Holland, Amsterdam, New York, 1979).

  27. V. Kiryakova, ‘‘Transmutation method for solving hyper-Bessel differential equations based on the Poisson–Dimovski transformation,’’ Fract. Calc. Appl. Anal. 11, 299–316 (2008).

    MathSciNet  MATH  Google Scholar 

  28. S. M. Sitnik and E. L. Shishkina, Method of Transmutations for Differential Equations with Bessel Operators (Fizmatlit, Moscow, 2019) [in Russian].

    Google Scholar 

  29. Sh. T. Karimov, ‘‘Method of solving the Cauchy problem for one-dimensional polywave equation with singular Bessel operator,’’ Russ. Math. (Iz. VUZ) 61 (8), 22–35 (2017).

  30. G. Bateman and A. Erdélyi, Higher Transcendental Functions (McGraw-Hill, New York, 1953; Nauka, Moscow, 1973), Vol. 1.

  31. M. B. Kapilevich, ‘‘On confluent hypergeometric Horn functions,’’ Differ. Uravn. 2, 1239–1254 (1966).

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sh. T. Karimov.

Additional information

(Submitted by S. A. Grigoryan)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Urinov, A., Karimov, S. On the Cauchy Problem for the Iterated Generalized Two-axially Symmetric Equation of Hyperbolic Type. Lobachevskii J Math 41, 102–110 (2020). https://doi.org/10.1134/S199508022001014X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199508022001014X

Keywords:

Navigation