Skip to main content
Log in

Application of Gold Nanoparticles for High-Sensitivity Fluorescence Polarization Aptamer Assay for Ochratoxin A

  • NANOBIOLOGY AND GENETICS, OMICS
  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

The use of gold nanoparticles (GNPs) as carriers for the decrease in the detection limit of a fluorescence polarization (FP) aptamer assay is proposed. The common FP assay is based on the use of polarized exciting light and changes in the polarization of emitted light by the fluorophore–analyte conjugate before and after its binding with a receptor of the target analyte. Aptamers’ application as receptors in such an assay is limited due to their low molecular weight and, consequently, insufficient influence on polarization of emitted light. This limitation can be overcome by the inclusion of aptamers in larger intermolecular complexes. In the present work, the advantages of GNPs as unified, stable, and simply modified carriers for aptamers are demonstrated. The FP aptamer assay is realized with the use of GNPs with average diameter of 8.7 nm and ochratoxin A (OTA) as the target analyte. Finally, the assay is tested for OTA control in spiked white wine. The reached limit of detection is 2.3 µg/kg, which is 25-fold lower as compared to native aptamer. The time of the assay is 15 min. The universality of the proposed approach makes it possible to use aptamers for FP assays of various low-molecular-weight substances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. L. Dykman and N. Khlebtsov, Chem. Soc. Rev. 41, 2256 (2012). https://doi.org/10.1134/S1995078013020092

    Article  CAS  Google Scholar 

  2. N. Elahi, M. Kamali, and M. H. Baghersad, Talanta 184, 537 (2018). https://doi.org/10.1016/j.talanta.2018.02.088

    Article  CAS  Google Scholar 

  3. J. R. G. Navarro and F. Lerouge, Nanophotonics 6, 71 (2017). https://doi.org/10.1515/nanoph-2015-0143

    Article  CAS  Google Scholar 

  4. B. N. Khlebtsov, V. A. Khanadeev, E. V. Panfilova, T. E. Pylaev, O. A. Bibikova, S. A. Staroverov, V. A. Bogatyrev, L. A. Dykman, and N. G. Khlebtsov, Nanotechnol. Russ. 8, 209–219 (2013). https://doi.org/10.1134/S1995078013020092

    Article  Google Scholar 

  5. M. Malmsten, Curr. Opin. Colloid Interface Sci. 18, 468 (2013). https://doi.org/10.1016/j.cocis.2013.06.002

    Article  CAS  Google Scholar 

  6. G. Doria, J. Conde, B. Veigas, et al., Sensors 12, 1657 (2012). https://doi.org/10.3390/s120201657

    Article  CAS  Google Scholar 

  7. N. G. Khlebtsov, V. A. Bogatyrev, L. A. Dykman, and B. N. Khlebtsov, Ross. Nanotekhnol. 2 (3–4), 69–86 (2007).

    Google Scholar 

  8. N. L. Rosi and C. A. Mirkin, Chem. Rev. 105, 1547 (2005). https://doi.org/10.1021/cr030067f

    Article  CAS  Google Scholar 

  9. C. A. Mirkin, R. L. Letsinger, R. C. Mucic, and J. J. Storhoff, Nature (London, U.K.) 382 (6592), 607 (1996). https://doi.org/10.1038/382607a0

    Article  CAS  Google Scholar 

  10. A. D. Ellington and J. W. Szostak, Nature (London, U.K.) 355 (6363), 850 (1992). https://doi.org/10.1038/355850a0

    Article  CAS  Google Scholar 

  11. H. Y. Kong and J. Byun, Biomol. Ther. 21, 423 (2013). https://doi.org/10.4062/biomolther.2013.085

    Article  Google Scholar 

  12. M. McKeague, E. M. McConnell, J. Cruz-Toledo, et al., J. Mol. Evol. 81, 150 (2015). https://doi.org/10.1007/s00239-015-9708-6

    Article  CAS  Google Scholar 

  13. Y. Nakamura, in Nucleic Acid Drugs, Ed. by A. Murakami (Springer, Heidelberg, 2012), p. 135. https://doi.org/10.1007/978-3-642-30463-7

  14. J. J. Xu, L. L. Li, H. Shi, et al., Inorg. Chem. Commun. 107, 107456 (2019). https://doi.org/10.1016/j.inoche.2019.107456

    Article  CAS  Google Scholar 

  15. D. Kim, Y. Y. Jeong, and S. Jon, ACS Nano 4, 3689 (2010). https://doi.org/10.1021/nn901877h

    Article  CAS  Google Scholar 

  16. C. D. Medley, J. E. Smith, Z. Tang, et al., Anal. Chem. 80, 1067 (2008). https://doi.org/10.1021/ac702037y

    Article  CAS  Google Scholar 

  17. H. Wei, B. Li, J. Li, et al., Chem. Commun., No. 36, 3735 (2007). https://doi.org/10.1039/b707642h

  18. Y. Y. Wu, P. Huang, and F. Y. Wu, Food Chem. 304, 125377 (2020). https://doi.org/10.1016/j.foodchem.2019.125377

    Article  CAS  Google Scholar 

  19. W. Wang, C. Chen, M. Qian, and X. S. Zhao, Anal. Biochem. 373, 213 (2008). https://doi.org/10.1016/j.ab.2007.11.013

    Article  CAS  Google Scholar 

  20. J. Wang, Y. Shan, W. W. Zhao, et al., Anal. Chem. 83, 4004 (2011). https://doi.org/10.1021/ac200616g

    Article  CAS  Google Scholar 

  21. R. H. Wang, C. L. Zhu, L. L. Wang, et al., Talanta 205, 120094 (2019). https://doi.org/10.1016/j.talanta.2019.06.094

    Article  CAS  Google Scholar 

  22. Z. Liu and H. Wang, Analyst 144, 5794 (2019). https://doi.org/10.1039/c9an01430f

    Article  CAS  Google Scholar 

  23. Y. Morita, M. Leslie, H. Kameyama, et al., Cancers 10, 80 (2018). https://doi.org/10.3390/cancers10030080

    Article  CAS  Google Scholar 

  24. J. Zhou and J. Rossi, Nat. Rev. Drug Discov. 16, 181 (2017). https://doi.org/10.1038/nrd.2016.199

    Article  CAS  Google Scholar 

  25. H. Y. Zhang, S. P. Yang, K. de Ruyck, et al., Trends Anal. Chem. 114, 293 (2019). https://doi.org/10.1016/j.trac.2019.03.013

    Article  CAS  Google Scholar 

  26. A. V. Samokhvalov, I. V. Safenkova, S. A. Eremin, et al., Anal. Chim. Acta 962, 80 (2017). https://doi.org/10.1016/j.aca.2017.01.024

    Article  CAS  Google Scholar 

  27. Y. Li, L. Sun, and Q. Zhao, Talanta 174, 7 (2017). https://doi.org/10.1016/j.talanta.2017.05.077

    Article  CAS  Google Scholar 

  28. Y. Wang, Z. Li, B. Barnych, et al., J. Agric. Food Chem. 67, 11536 (2019). https://doi.org/10.1021/acs.jafc.9b04621

    Article  CAS  Google Scholar 

  29. Y. Tao, S. Xie, F. Xu, et al., Food Chem. Toxicol. 112, 320 (2018). https://doi.org/10.1016/j.fct.2018.01.002

    Article  CAS  Google Scholar 

  30. Commission Regulation (EC) No. 1881/2006 of 19 December 2006 Setting Maximum Levels for Certain Contaminants in Foodstuffs OJ L 364 (2006), p. 5.

  31. D. Philip, Spectrochim. Acta A 71, 80 (2008). https://doi.org/10.1016/j.saa.2007.11.012

    Article  CAS  Google Scholar 

  32. A. V. Samokhvalov, S. C. Razo, I. V. Safenkova, et al., Int. J. Appl. Eng. Res. 12, 14847 (2017). www.ripublication.com/ijaer17/ijaerv12n23_107.pdf.

  33. G. S. Sittampalam, W. C. Smith, T. W. Miyakawa, et al., J. Immunol. Methods 190, 151 (1996). https://doi.org/10.1016/0022-1759(95)00262-6

    Article  CAS  Google Scholar 

  34. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, New York, 2006). https://doi.org/10.1007/978-0-387-46312-4

  35. “Dynamic light scattering common terms defined,” Malvern Application Note MRK1764-01 (Malvern Instruments Ltd., Worcestershire, 2011). http://www.biophysics.bioc.cam.ac.uk/wp-content/uploads/2011/02/DLS_Terms_defined_Malvern.pdf.

  36. A. V. Fonin, A. I. Sulatskaya, I. M. Kuznetsova, and K. K. Turoverov, PLoS One 9, e103878 (2014). https://doi.org/10.1371/journal.pone.0103878

    Article  CAS  Google Scholar 

  37. J. R. Crowther, The ELISA Guidebook. Methods in Molecular Biology (Humana, New York, 2009). https://doi.org/10.1007/978-1-60327-254-4

  38. N. Belli, S. Marin, V. Sanchis, and A. J. Ramos, Food Sci. Technol. Int. 8, 325 (2002). https://doi.org/10.1106/108201302031863

    Article  CAS  Google Scholar 

  39. S. J. Bellver, M. Fernandez-Franzon, M. J. Ruiz, and A. Juan-Garcia, J. Agric. Food Chem. 62, 7643 (2014). https://doi.org/10.1021/jf501737h

    Article  CAS  Google Scholar 

Download references

Funding

The study was partially supported by the Russian Foundation for Basic Research (grant no. 18-08-01397_a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. B. Dzantiev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samokhvalov, A.V., Safenkova, I.V., Eremin, S.A. et al. Application of Gold Nanoparticles for High-Sensitivity Fluorescence Polarization Aptamer Assay for Ochratoxin A. Nanotechnol Russia 14, 397–404 (2019). https://doi.org/10.1134/S1995078019040116

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078019040116

Navigation