Skip to main content
Log in

Morphology, Chemical Structure, and Cathode Properties of Nanostructured Iron Coatings on Highly Developed Surfaces of Aluminum and Porous Alumina

  • FUNCTIONAL AND CONSTRUCTION NANOMATERIALS
  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

The results of a study of the morphology and chemical structure of iron coatings deposited on nanostructured surfaces of aluminum and porous alumina by the thermal deposition method before and after the cathodic hydrogen evolution reaction are reported. It is shown that an increase in the diameter of pores on the surface of alumina does not lead to a change in the cathode current density due to the different contribution of the boundary between the pores to the total surface area of the sample, whereas an increase in the size of hemispherical pits on the surface of aluminum plates leads to an increase in the cathode current density, which indicates an increase in the hydrogen evolution efficiency. No changes are detected in the morphology and chemical structure of the surface before or after the reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. L. A. Kibler, Chem. Phys. Chem. 7, 985 (2006). https://doi.org/10.1002/cPhc.200500646

    Article  CAS  Google Scholar 

  2. M. R. Gennero de Chialvo and A. C. Chialvo, Phys. Chem. Chem. Phys. 3, 3180 (2001). https://doi.org/10.1039/B102777H

    Article  CAS  Google Scholar 

  3. J. O. Gil Posada, and P. J. Hall, Int. J. Hydrogen Energy 41, 20807 (2016). https://doi.org/10.1016/j.ijhydene.2016.04.123

    Article  CAS  Google Scholar 

  4. Y. Attia and M. Samer, Renewable Sustainable Energy Rev. 79, 878 (2017). https://doi.org/10.1016/j.rser.2017.05.113

    Article  CAS  Google Scholar 

  5. Y. J. Wang, S. M. Hussain, and G. P. Krestin, Eur. Radiol. 11, 2319 (2001). https://doi.org/10.1007/s003300100908

    Article  CAS  Google Scholar 

  6. A. Jordan, R. Scholz, P. Wust, et al., J. Magn. Magn. Mater. 201, 413 (1999). https://doi.org/10.1016/S0304-8853(99)00088-8

    Article  CAS  Google Scholar 

  7. C. G. Hadji Panayis, M. J. Bonder, S. Balakrishnan, et al., Small 4, 1925 (2008). https://doi.org/10.1002/smll.200800261

    Article  CAS  Google Scholar 

  8. X. Li, D. W. Elliott, and W. Zhang, Crit. Rev. Solid State Mater. Sci. 31, 111 (2006). https://doi.org/10.1080/10408430601057611

    Article  CAS  Google Scholar 

  9. W. Yan, H. L. Lien, B. E. Koel, and W. Zhang, Environ. Sci. Process. Impacts 15, 63 (2013). https://doi.org/10.1039/C2EM30691C

    Article  CAS  Google Scholar 

  10. G. S. Nechitailo, O. A. Bogoslovskaya, I. P. Ol’khovskay, and N. N. Glushchenko, Nanotechnol. Russ. 13, 161 (2018). https://doi.org/10.1134/S1995078018020052

    Article  CAS  Google Scholar 

  11. H. Föll, M. Christophersen, J. Carstensen, and G. Hasse, Mater. Sci. Eng. R. 39, 93 (2002). https://doi.org/10.1016/s0927-796x(02)00090-6

    Article  Google Scholar 

  12. R. G. Valeev, A. L. Trigub, A. N. Beltiukov, et al., J. Surf. Invest.: X-ray, Synchrotr. Neutron Tech. 13, 92 (2019). https://doi.org/10.1134/S1027451019010373

    Article  CAS  Google Scholar 

  13. R. G. Valeev, V. V. Stashkova, A. I. Chukavin, et al., Phys. Proc. C 84, 407 (2016). https://doi.org/10.1016/j.PhPro.2016.11.069

  14. R. S. Patil, C. D. Lokhe, and R. S. Mane, et al., J. Non-Cryst. Solids 353, 1645 (2007). https://doi.org/10.1016/j.jnoncrysol.2007.01.014

    Article  CAS  Google Scholar 

  15. L. Messel and R. Glang, Handbook of Thin Film Technology (McGraw-Hill, New York, 1970), Vol. 2.

    Google Scholar 

  16. H. Masuda and K. Fukuda, Science (Washington, DC, U. S.) 268, 1466 (1995). https://doi.org/10.1126/science.268.5216.1466

    Article  CAS  Google Scholar 

  17. A. Santos, P. Formentin, J. Pallares, et al., J. Electroanal. Chem. 655, 73 (2011). https://doi.org/10.1016/j.jelechem.2011.02.005

    Article  CAS  Google Scholar 

  18. C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, Nat. Methods 9, 671 (2012). https://doi.org/10.1038/nmeth.2089

    Article  CAS  Google Scholar 

  19. Y. Zheng, Y. Jiao, M. Jaroniec, and S. Z. Qiao, Angew. Chem., Int. Ed. 54, 52 (2015). https://doi.org/10.1002/anie.201407031

    Article  CAS  Google Scholar 

  20. N. Eliaz and E. Gileadi, Physical Electrochemistry: Fundamentals, Techniques, and Applications, 2nd ed. (Wiley, New York, 2019).

    Google Scholar 

Download references

Funding

This study was conducted using the equipment of the Center for Collective Use, Center of Physical and Physicochemical Methods of Analysis, Investigation of Properties and Characteristics of the Surface, Nanostructures, Materials, and Products, Udmurt Federal Research Center, Ural Branch, Russian Academy of Sciences, with financial support from the Ministry of Science and Higher Education of the Russian Federation within the framework of Federal Target Program Research and Development in Priority Areas of Development of the Russian Scientific and Technological Complex for 2014–2020 (unique identification code of the project RFMEFI62119X0035) within the fundamental research project of the Ural Branch of the Russian Academy of Sciences (project no. 18-10-2-25), as well as within the topic of the Department of Surface Physics and Chemistry, Udmurt Federal Research Center, Ural Branch, Russian Academy of Sciences (state registration number AAAA-A17-117022250040-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. G. Valeev.

Additional information

Translated by O. Kadkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valeev, R.G., Alalykin, A.S. Morphology, Chemical Structure, and Cathode Properties of Nanostructured Iron Coatings on Highly Developed Surfaces of Aluminum and Porous Alumina. Nanotechnol Russia 14, 346–352 (2019). https://doi.org/10.1134/S199507801904013X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199507801904013X

Navigation