Skip to main content
Log in

Global Mittag-Leffler Stability of Fractional Hopfield Neural Networks with δ-Inverse Hölder Neuron Activations

  • Published:
Optical Memory and Neural Networks Aims and scope Submit manuscript

Abstract

In this paper, the global Mittag-Leffler stability of fractional Hopfield neural networks (FHNNs) with \(\delta \)-inverse hölder neuron activation functions are considered. By applying the Brouwer topological degree theory and inequality analysis techniques, the proof of the existence and uniqueness of equilibrium point is addressed. By constructing the Lure’s Postnikov-type Lyapunov functions, the global Mittag-Leffler stability conditions are achieved in terms of linear matrix inequalities (LMIs). Finally, three numerical examples are given to verify the validity of the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Hopfield, J.J., Neural networks and physical systems with emergent collective computational abilities Proc. Natl. Acad. Sci., 1982, vol. 79, no. 8, pp. 2554–2558.

    Article  MathSciNet  Google Scholar 

  2. Podlubny, I., Fractional Differential Equations, San Diego, CA: Academic Press, 1999.

    MATH  Google Scholar 

  3. Banerjee, S. and Verghese, G., Nonlinear Phenomena in Power Electronics: Bifurcation, Chaos, Control, and Applications, New York: Wiley-IEEE Press, 2001.

    Book  Google Scholar 

  4. Liberzon, D., Switching in System and Control, Birkhäuser Boston, 2001.

    Google Scholar 

  5. Gupta, M., Jin, L., and Homma, N., Static and Dynamic Neural Networks: From Fundamentals to Advanced Theory, New York: Wiley Interscience, 2003.

    Book  Google Scholar 

  6. Qin, S. and Xue, X., A two-layer recurrent neural network for nonsmooth convex optimization problems, IEEE Trans. Neural Networks Learn., 2015, vol. 26, no. 6, pp. 1149–1160.

    Article  MathSciNet  Google Scholar 

  7. Li, Y., Chen, Y., and Podlubny, I., Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability, Comput. Math. Appl., 2010, vol. 59, pp. 1810–1821.

    Article  MathSciNet  Google Scholar 

  8. Liu, M. and Wu, H., Stochastic finite-time synchronization for discontinuous semi-Markovian switching neural networks with time delays and noise disturbance, Neurocomputing, 2018, vol. 310, no. 6, pp. 246–264.

    Article  Google Scholar 

  9. Wu, H., Zhang, X., and Xue, S., LMI conditions to global Mittag-Leffler stability of fractional-order neural networks with impulses, Neurocomputing, 2016, vol. 193, pp. 148–154.

    Article  Google Scholar 

  10. Wu, G.C., Baleanu, D., and Luo, W.H., Lyapunov functions for Riemann-Liouville-like fractional difference equation, Appl. Math. Comput., 2017, vol. 314, pp. 228–236.

    MathSciNet  MATH  Google Scholar 

  11. Wu, H., Tao, F., Qin, L., Shi, R., and He, L., Robust exponential stability for interval neural networks with delays and non-Lipschitz activation functions, Nonlinear Dyn., 2011, vol. 66, no. 4, pp. 479–487.

    Article  MathSciNet  Google Scholar 

  12. Picozzi, S. and West, B.J., Fractional Langevin model of memory in financial markets, Phys. Rev. E, 2016, vol. 66, no. 4, 046118.

    Article  MathSciNet  Google Scholar 

  13. Reyes-Melo, E., Martinez-Vega, J., Guerrero-Salazar, C., and Ortiz-Mendez, U., Application of fractional calculus to the modeling of dielectric relaxation phenomena in polymeric materials, J. Appl. Polym. Sci., 2005, vol. 98, no 2. pp 923–935.

    Article  Google Scholar 

  14. Özalp, N. and Demi̇rci̇, E., A fractional order SEIR model with vertical transmission, Math. Comput. Modell., 2011, vol. 54, nos. 1–2, pp. 1–6.

    Article  MathSciNet  Google Scholar 

  15. Soczkiewicz, E., Application of fractional calculus in the theory of viscoelasticity, Mol. Quantum Acoust., 2002, vol. 23, pp. 397–404.

    Google Scholar 

  16. Hilfer, R., Applications of Fractional Calculus in Physics, World Scientific, 2000.

    Book  Google Scholar 

  17. Arena, P., Caponetto, R., Fortuna, L., and Porto, D., Bifurcation and chaos in noninteger order cellular neural networks, Int. J. Bifurcation Chaos, 1998, vol. 8, no. 7, pp. 1527–1539.

    Article  Google Scholar 

  18. Stamova, I., Stamov, G., Simeonov, S., and Ivanov, A., Mittag-Leffler stability of impulsive fractional-order bidirectional associative memory neural networks with time-varying delays, Trans. Inst. Meas. Control, 2018, vol. 40, no. 10, pp. 3068–3077.

    Article  Google Scholar 

  19. Chen, J., Li, C., and Yang, X., Asymptotic stability of delayed fractional-order fuzzy neural networks with impulse effects, J. Franklin Inst., 2018, vol. 355, no. 15, pp. 7595–7608.

    Article  MathSciNet  Google Scholar 

  20. Peng, L., Zeng, Z., and Wang, J., Multiple Mittag-Leffler stability of fractional-order recurrent neural networks, IEEE Trans. Syst. Man Cybern. Syst., 2015, vol. 99, pp. 1–10.

    Google Scholar 

  21. Wan, L. and Wu, A., Multiple Mittag-Leffler stability and locally asymptotical ω-periodicity for fractional-order neural networks, Neurocomputing, 2018, vol. 315, pp. 272–282.

    Article  Google Scholar 

  22. Wan, L. and Wu, A., Multistability in Mittag-Leffler sense of fractional-order neural networks with piecewise constant arguments, Neurocomputing, 2018, vol. 286, pp. 1–10.

    Article  Google Scholar 

  23. Liu, P., Nie, X., and Liang, J., Multiple Mittag-Leffler stability of fractional-order competitive neural networks with Gaussian activation functions, Neural Networks, 2018, vol. 108, pp. 452–465.

    Article  Google Scholar 

  24. Wang, L., Wu, H., Liu, D., Boutat, D., and Chen, Y., Lur’e Postnikov Lyapunov functional technique to global Mittag-Leffler stability of fractional-order neural networks with piecewise constant argument, Neurocomputing, 2018, vol. 302, pp. 23–32.

    Article  Google Scholar 

  25. Bao, H., Cao, J., and Kurths, J., State estimation of fractional-order delayed memristive neural networks, Nonlinear Dyn., 2018, vol. 94, no. 2, pp. 1215–1225.

    Article  Google Scholar 

  26. Bao, H., Park, J.H., and Cao, J., Synchronization of fractional-order complex-valued neural networks with time delay, Neural Networks, 2016, vol. 81, pp. 16–28.

    Article  Google Scholar 

  27. Bao, H., Park, J.H., and Cao, J., Synchronization of fractional-order delayed neural networks with hybrid coupling, Complexity, 2016, vol. 21, pp. 106–112.

    Article  MathSciNet  Google Scholar 

  28. Yang, X., Li, C., and Song, Q., Global Mittag-Leffler stability and synchronization analysis of fractional-order quaternion-valued neural networks with linear threshold neurons, Neural Networks, 2018, vol. 105, pp. 88–103.

    Article  Google Scholar 

  29. Zhao, W. and Wu, H., Fixed-time synchronization of semi-Markovian jumping neural networks with time-varying delays, Adv. Diff. Equations, 2018. https://doi.org/10.1186/s13662-018-1666-z

  30. Peng, X., Wu, H., and Cao, J., Global nonfragile synchronization in finite time for fractional-order discontinuous neural networks with nonlinear growth activations, IEEE Trans. Neural Networks Learn. Syst., 2019, vol. 30, no. 7, pp. 2123–2137. https://doi.org/10.1109/TNNLS.2018.2876726

    Article  MathSciNet  Google Scholar 

  31. Peng, X., Wu, H., Song, K., and Shi, J., Global synchronization in finite time for fractional-order neural networks with discontinuous activations and time delays, Neural Networks, 2017, vol. 94, pp. 46–54.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaohong Wang or Huaiqin Wu.

Ethics declarations

The authors declare that they have no conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiaohong Wang, Huaiqin Wu Global Mittag-Leffler Stability of Fractional Hopfield Neural Networks with δ-Inverse Hölder Neuron Activations. Opt. Mem. Neural Networks 28, 239–251 (2019). https://doi.org/10.3103/S1060992X19040064

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1060992X19040064

Keywords:

Navigation