Skip to main content
Log in

Combustion of Ti–Al Mixtures: Influence of Preheating, Mechanical Activation, and Burning Mode

  • Published:
International Journal of Self-Propagating High-Temperature Synthesis Aims and scope Submit manuscript

Abstract

The influence of preheating, burning mode, and mechanical activation on combustion of Ti–Al mixtures was studied. Process conditions that ensure a largest TiAl + Ti3Al content of combustion product have been outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Banhart, J., Manufacture, characterization and application of cellular metals and metal foams, Prog. Mater. Sci., 2001, vol. 46, no. 6, pp. 559–632.

    Article  CAS  Google Scholar 

  2. Novoselova, T., Celotto, S., Morgan, R., Fox, P., and O’Neill, W, Formation of TiAl intermetallics by heat treatment of cold sprayed precursor deposits, J. Alloys Compd., 2007, vol. 436, pp. 69–77. https://doi.org/10.1016/j.jallcom.2006.06.101

    Article  CAS  Google Scholar 

  3. Przeliorz, R., Goral, M., Moskal, G., and Swadzba, L., The relationship between specific heat capacity and oxidation resistance of TiAl alloys, J. Achiev. Mater. Manuf. Eng., 2007, vol. 21, pp. 48–50.

    Google Scholar 

  4. McKimpson, M.G. and Scott, T.E., Processing and properties of metal matrix composites containing discontinuous reinforcement, Mater. Sci. Eng. A, 1989, vol. 107, nos. 1–2, pp. 93–106.

    Article  Google Scholar 

  5. Divecha, A.P., Fishman, S.G., and Karmarkar, S.D., Silicon carbide reinforced aluminum: A formable composite, J. Met., 1981, vol. 33, no. 9, pp. 12–17.

    CAS  Google Scholar 

  6. Medda, E., Delogu F., and Cao, G., Combination of mechanochemical activation and self-propagating behaviour for the synthesis of Ti aluminides, Mater. Sci. Eng. A, 2003, vol. 361, nos. 1–2, pp. 23–28. https://doi.org/10.1016/S0921-5093(03)00566-5

    Article  CAS  Google Scholar 

  7. Adeli, M., Seyedein, S.H., Aboutalebi, M.R., Kobashi, M., and Kanetake, N., A study on the combustion synthesis of titanium aluminide in the self-propagating mode, J. Alloys Compd., 2010, vol. 497, pp. 100–104. https://doi.org/10.1016/j.jallcom.2010.03.050

    Article  CAS  Google Scholar 

  8. Korchagin, M.A., Thermal explosion in mechanically activated low-calorific-value compositions, Combust. Explos. Shock Waves, 2015, vol. 51, no. 5, pp. 578–586. https://doi.org/10.1134/S0010508215050093

    Article  Google Scholar 

  9. Boyarchenko, O.D., Kamynina, O.K., Sytschev, A.E., Vadchenko, S.G., Gotman, I., and Umarov, L.M., Synthesis of Ti–Al based materials by thermal explosion, Int. J. Self-Propag. High-Temp. Synth., 2010, vol. 19, no. 4, pp. 285–291. https://doi.org/10.3103/S1061386210040084

    Article  CAS  Google Scholar 

  10. Filimonov, V.Yu., Korchagin, M.A., Ditenberg, I.A., Tyumentsev, A.N., and Lyakhov, N.Z., High temperature synthesis of single-phase Ti3Al intermetallic compound in mechanically activated powder mixture, Powder Technol., 2013, vol. 335, pp. 606–613. /https://doi.org/10.1016/j.powtec.2012.11.022

    Article  CAS  Google Scholar 

  11. Kvanin, V.L., Balikhina, N.T., Vadchenko, S.G., Borovinskaya, I.P., and Sychev, A.E., Preparation of γ-TiAl intermetallic compounds through self-propagating high-temperature synthesis and compaction, Inorg. Mater., 2008, vol. 44, no. 11, pp. 1194–1198. https://doi.org/10.1134/S0020168508110095

    Article  CAS  Google Scholar 

  12. Che, H. and Fan, Q., Microstructural evolution during the ignition/quenching of preheated Ti/3Al powders, J. Alloys Compd., 2009, vol. 475, pp. 184–190. https://doi.org/10.1016/j.jallcom.2008.07.035

    Article  CAS  Google Scholar 

  13. Filimonov, V., Sitnikov, A., Afanas’ev, A., Loginova, M., Yakovlev, V., Negodyaev, A., Schreifer, D., and Solov’ev, V., Microwave assisted combustion synthesis in mechanically activated 3Ti +Al powder mixtures: Structure formation, Int. J. Self-Propag. High-Temp. Synth., 2014, vol. 23, pp. 18–25. https://doi.org/10.3103/S1061386214010038

    Article  CAS  Google Scholar 

  14. Korchagin, M.A., Grigor’eva, T.F., Bokhonov, B.B., Sharafutdinov, M.R., Barinova, A.P., and Lyakhov, N.Z., Solid-state combustion in mechanically activated SHS systems: I. Effect of activation time on process parameters and combustion product composition, Combust. Explos. Shock Waves, 2003, vol. 39, no. 1, pp. 43–50. https://doi.org/10.1023/A:1022145201911

    Article  Google Scholar 

  15. Kovalev, D.Yu., Kochetov, N.A., Ponomarev, V.I., and Mukasyan, A.S., Effect of mechanical activation on thermal explosion in Ni–Al mixtures, Int. J. Self-Propag. High-Temp. Synth., 2010, vol. 19, no. 2, pp. 120–125. https://doi.org/10.3103/S106138621002007X

    Article  CAS  Google Scholar 

  16. Kochetov, N.A., Combustion and characteristics of mechanically activated Ni + Al mixture: Effects of the weight and size of the milling balls, Russ. J. Phys. Chem. B, 2016, vol. 10, no. 4, pp. 639–643. https://doi.org/10.1134/S1990793116040047

    Article  CAS  Google Scholar 

  17. Zeldovich, Ya.B., Barenblatt, G.I., Librovich, V.B., and Makhviladze, G.M., The Mathematical Theory of Combustion and Explosions, New York: Plenum, 1985. https://doi.org/10.1007/978-1-4613-2349-5

    Book  Google Scholar 

  18. Kochetov, N.A. and Seplyarskii, B.S., Effect of mechanical activation of granulated and powdered Ni + Al mixtures on flame-propagation rates and sample elongation in combustion, Russ. J. Phys. Chem. B, 2018, vol. 12, no. 5, pp. 883–889. https://doi.org/10.1134/S1990793118050172

    Article  CAS  Google Scholar 

  19. Kovalev, D.Yu. and Kochetov, N.A., Behavior of the Ti–Al system during mechanical activation, Int. J. Self-Propag. High-Temp. Synth., 2013, vol. 22, no. 1, pp. 56–59. https://doi.org/10.3103/S1061386213010056

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to I.D. Kovalev for his help in XRD analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Kochetov.

Additional information

Translated by Yu. Scheck

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kochetov, N.A., Seplyarskii, B.S. Combustion of Ti–Al Mixtures: Influence of Preheating, Mechanical Activation, and Burning Mode. Int. J Self-Propag. High-Temp. Synth. 29, 26–30 (2020). https://doi.org/10.3103/S1061386220010057

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1061386220010057

Keywords:

Navigation