Skip to main content
Log in

SHS of Ti3SiC2-Based Materials in the Ti–Si–C System: Impact of Silicon Excess

  • Published:
International Journal of Self-Propagating High-Temperature Synthesis Aims and scope Submit manuscript

Abstract

For SHS of Ti3SiC2-based materials in the Ti–Si–C system, we explored the impact of silicon excess on the composition of resultant MAX-phase material by XRD and SEM methods. After hot pressing, SHS-produced MAX-phase material was found to contain over 88 wt % of Ti3SiC2. The SHS-produced powders are sinterable and deserve further studies on their hot pressing and pressure-less reactive sintering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Jeitschko, W., Nowotny, H., and Benesovsky, F., Kohlenstoffhaltige ternare Verbindungen (H-Phase), Monatsh. Chem., 1963, vol. 94, pp. 672–678. https://doi.org/10.1007/BF00902358

    Article  CAS  Google Scholar 

  2. Nowotny, H., Structurchemie Einiger Verbindungen der Ubergangsmetalle mit den Elementen C, Si, Ge, Sn, Prog. Solid State Chem., 1970, vol. 2, pp. 27–70. https://doi.org/10.1016/0079-6786(71)90016-1

    Article  Google Scholar 

  3. Barsoum, M.W., The Mn+1AXn phases: A new class of solids: Thermodynamically stable nanolaminates, Prog. Solid State Chem., 2000, vol. 28, pp. 201–281. https://doi.org/10.1016/S0079-6786(00)00006-6

    Article  CAS  Google Scholar 

  4. Barsoum, M.W., MAX Phases: Properties of Machinable Ternary Carbides and Nitrides, New York: Wiley–VCH, 2013.

    Book  Google Scholar 

  5. Eklund, P., Beckers, M., Jansson, U., Högberg, H., and Hultman, L., The Mn+1AXn phases: Materials science and thin-film processing, Thin Solid Films, 2010, vol. 518, pp. 1851–1878. https://doi.org/10.1016/j.tsf.2009.07.184

    Article  CAS  Google Scholar 

  6. Dahlqvist, M., Alling, B., and Rosén, J., Stability trends of MAX phases from first principles, Phys. Rev. B: Condens. Matter Mater. Phys., 2010, vol. 81, no. 22, 220102. https://doi.org/10.1103/PhysRevB.81.220102

    Article  CAS  Google Scholar 

  7. Pampuch, R., Lis, J., Stobierski, L., and Tymkiewicz, M., Solid combustion synthesis of Ti3SiC2, J. Eur. Ceram. Soc., 1989, vol. 5, no. 5, pp. 283–287. https://doi.org/10.1016/0955-2219(89)90022-8

    Article  CAS  Google Scholar 

  8. Wang, X.H. and Zhou, Y.C., Layered machinable and electrically conductive Ti2AlC and Ti3AlC2 ceramics: A review, J. Mater. Sci. Technol., 2010, vol. 26, no. 5, pp. 385–416. https://doi.org/10.1016/S1005-0302(10)60064-3

    Article  Google Scholar 

  9. Chlubny, L., Lis, J., and Bućko, M.M., Influence of precursors stoichiometry on SHS synthesis of Ti2AlC powders, Ceram. Eng. Sci. Proc., 2013, vol. 34, no. 10, pp. 263–271. https://doi.org/10.1002/9781118807743.ch23

    Article  Google Scholar 

  10. Chlubny, L., Lis, J., Borowiak, P., and Chabior, K., Influence of hot-pressing time on phase evolution of SHS obtained Ti2AlC active precursor powder, Ceram. Trans. Ser., 2018, vol. 261, pp. 197–205. https://doi.org/10.1002/9781119423829.ch17

    Article  CAS  Google Scholar 

  11. Chlubny, L. and Lis, J., Influence of precursors stoichiometry on SHS synthesis of Ti3AlC2 powders, Ceram. Trans. Ser., 2013, vol. 240, pp. 79–85. https://doi.org/10.1002/9781118744109.ch9

    Article  CAS  Google Scholar 

  12. Chlubny, L., Lis, J., and Bućko, M.M., Influence of nitrogen pressure on SHS synthesis of Ti2AlN powders, Ceram. Eng. Sci. Proc., 2015, pp. 251–260. https://doi.org/10.1002/9781119211747.ch20

    Chapter  Google Scholar 

  13. Vadchenko, S.G., Sytschev, A.E., Kovalev, D.Yu., Shchukin, A.S., and Konovalikhin, S.V., Self-propagating high-temperature synthesis in the Ti–Si–C system: Features of product patterning, Nanotechnol. Russ., 2015, vol. 10, nos. 1–2, pp. 67–74. https://doi.org/10.1134/S1995078015010206

    Article  CAS  Google Scholar 

  14. Radovic, M. and Barsoum, M.W., MAX phases: Bridging the gap between metals and ceramics, Am. Ceram. Soc. Bull., 2013, vol. 92, no. 3, pp. 20–27.

    CAS  Google Scholar 

  15. Joint Commitee for Powder Diffraction Standards: International Center for Diffraction Data.

  16. Rietveld, H.M., A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr., 1969, vol. 2, pp. 65–71. https://doi.org/10.1107/S0021889869006558

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the National Science Center (grant no. 2013/11/B/ST5/02275).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. Lis or L. Chlubny.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lis, J., Chlubny, L., Witulska, K. et al. SHS of Ti3SiC2-Based Materials in the Ti–Si–C System: Impact of Silicon Excess. Int. J Self-Propag. High-Temp. Synth. 28, 262–265 (2019). https://doi.org/10.3103/S1061386219040083

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1061386219040083

Keywords:

Navigation